ترغب بنشر مسار تعليمي؟ اضغط هنا

We show that closed subsets with vanishing first homology in two-dimensional spaces inherit the upper curvature bound from their ambient spaces and discuss topological applications.
This is the second in a two part series of papers concerning Morse quasiflats - higher dimensional analogs of Morse quasigeodesics. Our focus here is on their asymptotic structure. In metric spaces with convex geodesic bicombings, we prove asymptotic conicality, uniqueness of tangent cones at infinity and Euclidean volume growth rigidity for Morse quasiflats. Moreover, we provide some immediate consequences.
This is the first in a series of papers concerned with Morse quasiflats, which are a generalization of Morse quasigeodesics to arbitrary dimension. In this paper we introduce a number of alternative definitions, and under appropriate assumptions on t he ambient space we show that they are equivalent and quasi-isometry invariant; we also give a variety of examples. The second paper proves that Morse quasiflats are asymptotically conical and have canonically defined Tits boundaries; it also gives some first applications.
We show that any space with a positive upper curvature bound has in a small neighborhood of any point a closely related metric with a negative upper curvature bound.
We prove that in two dimensions the synthetic notions of lower bounds on sectional and on Ricci curvature coincide.
70 - Stephan Stadler 2018
We prove that a minimal disc in a CAT(0) space is a local embedding away from a finite set of branch points. On the way we establish several basic properties of minimal surfaces: monotonicity of area densities, density bounds, limit theorems and the existence of tangent maps. As an application, we prove Fary-Milnors theorem in the CAT(0) setting.
We show that the class of CAT(0) spaces is closed under suitable conformal changes. In particular, any CAT(0) space admits a large variety of non-trivial deformations.
A surface which does not admit a length nonincreasing deformation is called metric minimizing. We show that metric minimizing surfaces in CAT(0) spaces are locally CAT(0) with respect to their intrinsic metric.
We show that every finite-dimensional Alexandrov space X with curvature bounded from below embeds canonically into a product of an Alexandrov space with the same curvature bound and a Euclidean space such that each affine function on X comes from an affine function on the Euclidean space.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا