ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalar field dynamics may give rise to a nonzero cosmological variation of fundamental constants. Within different scenarios based on the unification of gauge couplings, the various claimed observations and bounds may be combined in order to trace or restrict the time history of the couplings and masses. If the scalar field is responsible for a dynamical dark energy or quintessence, cosmological information becomes available for its time evolution. Combining this information with the time variation of couplings, one can determine the interaction strength between the scalar and atoms, which may be observed by tests of the Weak Equivalence Principle. We compute bounds on the present rate of coupling variation from experiments testing the differential accelerations for bodies with equal mass and different composition and compare the sensitivity of various methods. In particular, we discuss two specific models of scalar evolution: crossover quintessence and growing neutrino models.
A number of positive and null results on the time variation of fundamental constants have been reported. It is difficult to judge whether or not these claims are mutually consistent, since the observable quantities depend on several parameters, namel y the coupling strengths and masses of particles. The evolution of these coupling-parameters over cosmological history is also a priori unknown. A direct comparison requires a relation between the couplings. We explore several distinct scenarios based on unification of gauge couplings, providing a representative (though not exhaustive) sample of such relations. For each scenario we obtain a characteristic time dependence and discuss whether a monotonic time evolution is allowed. For all scenarios, some contradictions between different observations appear. We show how a clear observational determination of non-zero variations would test the dominant mechanism of varying couplings within unified theories.
We analyze the effect of variation of fundamental couplings and mass scales on primordial nucleosynthesis in a systematic way. The first step establishes the response of primordial element abundances to the variation of a large number of nuclear phys ics parameters, including nuclear binding energies. We find a strong influence of the n-p mass difference (for the 4He abundance), of the nucleon mass (for deuterium) and of A=3,4,7 binding energies (for 3He, 6Li and 7Li). A second step relates the nuclear parameters to the parameters of the Standard Model of particle physics. The deuterium, and, above all, 7Li abundances depend strongly on the average light quark mass hat{m} equiv (m_u+m_d)/2. We calculate the behaviour of abundances when variations of fundamental parameters obey relations arising from grand unification. We also discuss the possibility of a substantial shift in the lithium abundance while the deuterium and 4He abundances are only weakly affected.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا