ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a first systematic comparison of superluminous Type Ia supernovae (SNe Ia) at late epochs, including previously unpublished photometric and spectroscopic observations of SN 2007if, SN 2009dc and SNF20080723-012. Photometrically, the object s of our sample show a diverse late-time behaviour, some of them fading quite rapidly after a light-curve break at ~150-200d. The latter is likely the result of flux redistribution into the infrared, possibly caused by dust formation, rather than a true bolometric effect. Nebular spectra of superluminous SNe Ia are characterised by weak or absent [Fe III] emission, pointing at a low ejecta ionisation state as a result of high densities. To constrain the ejecta and 56Ni masses of superluminous SNe Ia, we compare the observed bolometric light curve of SN 2009dc with synthetic model light curves, focusing on the radioactive tail after ~60d. Models with enough 56Ni to explain the light-curve peak by radioactive decay, and at the same time sufficient mass to keep the ejecta velocities low, fail to reproduce the observed light-curve tail of SN 2009dc because of too much gamma-ray trapping. We instead propose a model with ~1 solar mass of 56Ni and ~2 solar masses of ejecta, which may be interpreted as the explosion of a Chandrasekhar-mass white dwarf (WD) enshrouded by 0.6-0.7 solar masses of C/O-rich material, as it could result from a merger of two massive C/O WDs. This model reproduces the late light curve of SN 2009dc well. A flux deficit at peak may be compensated by light from the interaction of the ejecta with the surrounding material.
Extremely luminous, super-Chandrasekhar (SC) Type Ia Supernovae (SNe Ia) are as yet an unexplained phenomenon. We analyse a well-observed SN of this class, SN 2009dc, by modelling its photospheric spectra with a spectral synthesis code, using the tec hnique of Abundance Tomography. We present spectral models based on different density profiles, corresponding to different explosion scenarios, and discuss their consistency. First, we use a density structure of a simulated explosion of a 2 M_sun rotating C-O white dwarf (WD), which is often proposed as a possibility to explain SC SNe Ia. Then, we test a density profile empirically inferred from the evolution of line velocities (blueshifts). This model may be interpreted as a core-collapse SN with an ejecta mass ~ 3 M_sun. Finally, we calculate spectra assuming an interaction scenario. In such a scenario, SN 2009dc would be a standard WD explosion with a normal intrinsic luminosity, and this luminosity would be augmented by interaction of the ejecta with a H-/He-poor circumstellar medium. We find that no model tested easily explains SN 2009dc. With the 2 M_sun WD model, our abundance analysis predicts small amounts of burning products in the intermediate-/high-velocity ejecta (v > 9000 km/s). However, in the original explosion simulations, where the nuclear energy release per unit mass is large, burned material is present at high v. This contradiction can only be resolved if asymmetries strongly affect the radiative transfer or if C-O WDs with masses significantly above 2 M_sun exist. In a core-collapse scenario, low velocities of Fe-group elements are expected, but the abundance stratification in SN 2009dc seems SN Ia-like. The interaction-based model looks promising, and we have some speculations on possible progenitor configurations. However, radiation-hydro simulations will be needed to judge whether this scenario is realistic at all.
The properties of underluminous type Ia supernovae (SNe Ia) of the 91bg subclass have yet to be theoretically understood. Here, we take a closer look at the structure of the dim SN Ia 2005bl. We infer the abundance and density profiles needed to repr oduce the observed spectral evolution between -6 d and +12.9 d with respect to B maximum. Initially, we assume the density structure of the standard explosion model W7; then we test whether better fits to the observed spectra can be obtained using modified density profiles with different total masses and kinetic energies. Compared to normal SNe Ia, we find a lack of burning products especially in the rapidly-expanding outer layers (v>~15000 km/s). The zone between ~8500 and 15000 km/s is dominated by oxygen and includes some amount of intermediate mass elements. At lower velocities, intermediate mass elements dominate. This holds down to the lowest zones investigated in this work. This fact, together with negligible-to-moderate abundances of Fe-group elements, indicates large-scale incomplete Si burning or explosive O burning, possibly in a detonation at low densities. Consistently with the reduced nucleosynthesis, we find hints of a kinetic energy lower than that of a canonical SN Ia: The spectra strongly favour reduced densities at >~13000 km/s compared to W7, and are very well fitted using a rescaled W7 model with original mass (1.38 M_sun), but a kinetic energy reduced by ~30 % (i.e. from 1.33e51 erg to 0.93e51 erg).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا