ترغب بنشر مسار تعليمي؟ اضغط هنا

We derive first- and second-order piezoelectric coefficients for the zinc-blende III-V semiconductors, {Al,Ga,In}-{N,P,As,Sb}. The results are obtained within the Heyd-Scuseria-Ernzerhof hybrid-functional approach in the framework of density function al theory and the Berry-phase theory of electric polarization. To achieve a meaningful interpretation of the results, we build an intuitive phenomenological model based on the description of internal strain and the dynamics of the electronic charge centers. We discuss in detail first- and second-order internal strain effects, together with strain-induced changes in ionicity. This analysis reveals that the relatively large importance in the III-Vs of non-linear piezoelectric effects compared to the linear ones arises because of a delicate balance between the ionic polarization contribution due to internal strain relaxation effects, and the contribution due to the electronic charge redistribution induced by macroscopic and internal strain.
We present an atomistic description of the electronic and optical properties of $text{In}_{0.25}text{Ga}_{0.75}$N/GaN quantum wells. Our analysis accounts for fluctuations of well width, local alloy composition, strain and built-in field fluctuations as well as Coulomb effects. We find a strong hole and much weaker electron wave function localization in InGaN random alloy quantum wells. The presented calculations show that while the electron states are mainly localized by well-width fluctuations, the holes states are already localized by random alloy fluctuations. These localization effects affect significantly the quantum well optical properties,leading to strong inhomogeneous broadening of the lowest interband transition energy. Our results are compared with experimental literature data.
We present a theory of local electric polarization in crystalline solids and apply it to study the case of wurtzite group-III nitrides. We show that a local value of the electric polarization, evaluated at the atomic sites, can be cast in terms of a summation over nearest-neighbor distances and Born effective charges. Within this model, the local polarization shows a direct relation to internal strain and can be expressed in terms of internal strain parameters. The predictions of the present theory show excellent agreement with a formal Berry phase calculation for random distortions of a test-case CuPt-like InGaN alloy and InGaN supercells with randomly placed cations. While the present level of theory is appropriate for highly ionic compounds, we show that a more complex model is needed for less ionic materials, in which the strain dependence of Born effective charges has to be taken into account. Moreover, we provide ab initio parameters for GaN, InN and AlN, including hybrid functional values for the piezoelectric coefficients and the spontaneous polarization, which we use to accurately implement the local theory expressions. In order to calculate the local polarization potential, we also present a point dipole method. This method overcomes several limitations related to discretization and resolution which arise when obtaining the local potential by solving Poissons equation on an atomic grid. Finally, we perform tight-binding supercell calculations to assess the impact of the local polarization potential arising from alloy fluctuations on the electronic properties of InGaN alloys. In particular, we find that the large upward bowing with composition of the InGaN valence band edge is strongly influenced by local polarization effects. Furthermore, our analysis allows us to extract composition-dependent bowing parameters for the energy gap and valence and conduction band edges.
In this work we present a comparison of multiband k.p-models, the effective bond-orbital approach, and an empirical tight-binding model to calculate the electronic structure for the example of a truncated pyramidal GaN/AlN self-assembled quantum dot with a zincblende structure. For the system under consideration, we find a very good agreement between the results of the microscopic models and the 8-band k.p-formalism, in contrast to a 6+2-band k.p-model, where conduction band and valence band are assumed to be decoupled. This indicates a surprisingly strong coupling between conduction and valence band states for the wide band gap materials GaN and AlN. Special attention is paid to the possible influence of the weak spin-orbit coupling on the localized single-particle wave functions of the investigated structure.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا