ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the potential of the h_1 -> a_1 a_1 -> 4 tau signal from the lightest scalar (h_1) and pseudoscalar (a_1) Higgs bosons to cover the parameter space of the Next-to-Minimal Supersymmetric Standard Model (NMSSM) at the Large Hadron Collider (LH C). We exploit a 2 mu + 2 jets signature from four taus decays (accompanied by missing transverse energy), resorting to both Higgs-strahlung (HS), by triggering on leptonic W^pm decays, and Vector Boson Fusion (VBF), by triggering on two same sign non-isolated muons.
We investigate the associated production of charged Higgs bosons (H^pm) and W bosons at the CERN Large Hadron Collider, using the leptonic decay H^+ -> tau^+ nu_tau and hadronic W decay, within different scenarios of the Minimal Supersymmetric Standa rd Model (MSSM) with both real and complex parameters. Performing a parton level study we show how the irreducible Standard Model background from W + 2 jets can be controlled by applying appropriate cuts. In the standard m_h^max scenario we find a viable signal for large tan beta and intermediate H^pm masses (~ m_t). In MSSM scenarios with large mass-splittings among the heavy Higgs bosons the cross-section can be resonantly enhanced by factors up to one hundred, with a strong dependence on the CP-violating phases.
We investigate the viability of observing charged Higgs bosons (H^pm) produced in association with W bosons at the CERN Large Hadron Collider, using the leptonic decay H^+ -> tau^+ nu_tau and hadronic W decay, within the Minimal Supersymmetric Standa rd Model. Performing a parton level study we show how the irreducible Standard Model background from W + 2 jets can be controlled by applying appropriate cuts. In the standard m_h^max scenario we find a viable signal for large tan beta and intermediate H^pm masses (~ m_t).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا