ترغب بنشر مسار تعليمي؟ اضغط هنا

We introduce a model for the adaptive evolution of a network of company ownerships. In a recent work it has been shown that the empirical global network of corporate control is marked by a central, tightly connected core made of a small number of lar ge companies which control a significant part of the global economy. Here we show how a simple, adaptive rich get richer dynamics can account for this characteristic, which incorporates the increased buying power of more influential companies, and in turn results in even higher control. We conclude that this kind of centralized structure can emerge without it being an explicit goal of these companies, or as a result of a well-organized strategy.
Based on a non-equilibrium mechanism for spatial pattern formation we study how position information can be controlled by locally coupled discrete dynamical networks, similar to gene regulation networks of cells in a developing multicellular organism . As an example we study the developmental problems of domain formation and proportion regulation in the presence of noise, as well as in the presence of cell flow. We find that networks that solve this task exhibit a hierarchical structure of information processing and are of similar complexity as developmental circuits of living cells. Proportion regulation is scalable with system size and leads to sharp, precisely localized boundaries of gene expression domains, even for large numbers of cells. A detailed analysis of noise-induced dynamics, using a mean-field approximation, shows that noise in gene expression states stabilizes (rather than disrupts) the spatial pattern in the presence of cell movements, both for stationary as well as growing systems. Finally, we discuss how this mechanism could be realized in the highly dynamic environment of growing tissues in multi-cellular organisms.
It has been proposed that adaptation in complex systems is optimized at the critical boundary between ordered and disordered dynamical regimes. Here, we review models of evolving dynamical networks that lead to self-organization of network topology b ased on a local coupling between a dynamical order parameter and rewiring of network connectivity, with convergence towards criticality in the limit of large network size $N$. In particular, two adaptive schemes are discussed and compared in the context of Boolean Networks and Threshold Networks: 1) Active nodes loose links, frozen nodes aquire new links, 2) Nodes with correlated activity connect, de-correlated nodes disconnect. These simple local adaptive rules lead to co-evolution of network topology and -dynamics. Adaptive networks are strikingly different from random networks: They evolve inhomogeneous topologies and broad plateaus of homeostatic regulation, dynamical activity exhibits $1/f$ noise and attractor periods obey a scale-free distribution. The proposed co-evolutionary mechanism of topological self-organization is robust against noise and does not depend on the details of dynamical transition rules. Using finite-size scaling, it is shown that networks converge to a self-organized critical state in the thermodynamic limit. Finally, we discuss open questions and directions for future research, and outline possible applications of these models to adaptive systems in diverse areas.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا