ترغب بنشر مسار تعليمي؟ اضغط هنا

The challenging problem of skew scattering for Hall effects in dilute ferromagnetic alloys, with intertwined effects of spin-orbit coupling, magnetism and impurity scattering, is studied here from first principles. Our main aim is to identify chemica l trends and work out simple rules for large skew scattering in terms of the impurity and host states at the Fermi surface, with particular emphasis on the interplay of the spin and anomalous Hall effects in one and the same system. The predicted trends are benchmarked by referring to three different emph{ab initio} methods based on different approximations with respect to the electronic structure and transport properties.
The effective on-site Coulomb interaction (Hubbard $U$) between localized electrons at crystal surfaces is expected to be enhanced due to the reduced coordination number and reduced subsequent screening. By means of first principles calculations empl oying the constrained random-phase approximation (cRPA) we show that this is indeed the case for simple metals and insulators but not necessarily for transition metals and insulators that exhibit pronounced surface states. In the latter case, the screening contribution from surface states as well as the influence of the band narrowing increases the electron polarization to such an extent as to overcompensate the decrease resulting from the reduced effective screening volume. The Hubbard $U$ parameter is thus substantially reduced in some cases, e.g., by around 30% for the (100) surface of bcc Cr.
We present a general numerical approach to construct local Kohn-Sham potentials from orbital-dependent functionals within the all-electron full-potential linearized augmented-plane-wave (FLAPW) method, in which core and valence electrons are treated on an equal footing. As a practical example, we present a treatment of the orbital-dependent exact-exchange (EXX) energy and potential. A formulation in terms of a mixed product basis, which is constructed from products of LAPW basis functions, enables a solution of the optimized-effective-potential (OEP) equation with standard numerical algebraic tools and without shape approximations for the resulting potential. We find that the mixed product and LAPW basis sets must be properly balanced to obtain smooth and converged EXX potentials without spurious oscillations. The construction and convergence of the exchange potential is analyzed in detail for diamond. Our all-electron results for C, Si, SiC, Ge, GaAs semiconductors as well as Ne and Ar noble-gas solids are in very favorable agreement with plane-wave pseudopotential calculations. This confirms the adequacy of the pseudopotential approximation in the context of the EXX-OEP formalism and clarifies a previous contradiction between FLAPW and pseudopotential results.
Fe3Si is a ferromagnetic material with possible applications in magnetic tunnel junctions. When doped with Mn, the material shows a complex magnetic behavior, as suggested by older experiments. We employed the Korringa-Kohn-Rostoker (KKR) Green funct ion method within density-functional theory (DFT) in order to study the alloy Fe(3-x)Mn(x)Si, with 0 < x < 1. Chemical disorder is described within the coherent potential approximation (CPA). In agreement with experiment, we find that the Mn atoms align ferromagnetically to the Fe atoms, and that the magnetization and Curie temperature drop with increasing Mn-concentration $x$. The calculated spin polarization P at the Fermi level varies strongly with x, from P=-0.3 at x=0 (ordered Fe3Si) through P=0 at x=0.28, to P=+1 for x>0.75; i.e., at high Mn concentrations the system is half-metallic. We discuss the origin of the trends of magnetic moments, exchange interactions, Curie temperature and the spin polarization.
We present results of density-functional calculations on the magnetic properties of Cr, Mn, Fe and Co nano-clusters (1 to 9 atoms large) supported on Cu(001) and Cu(111). The inter-atomic exchange coupling is found to depend on competing mechanisms, namely ferromagnetic double exchange and antiferromagnetic kinetic exchange. Hybridization-induced broadening of the resonances is shown to be important for the coupling strength. The cluster shape is found to weaken the coupling via a mechanism that comprises the different orientation of the atomic d-orbitals and the strength of nearest-neighbour hopping. Especially in Fe clusters, a correlation of binding energy and exchange coupling is also revealed.
The magnetic state of Nitrogen-doped MgO, with N substituting O at concentrations between 1% and the concentrated limit, is calculated with density-functional methods. The N atoms are found to be magnetic with a moment of 1 Bohr magneton per Nitrogen atom and to interact ferromagnetically via the double exchange mechanism. The long-range magnetic order is established above a finite concentration of about 1.5% when the percolation threshold is reached. The Curie temperature increases linearly with the concentration, and is found to be about 30 K for 10% concentration. Besides the substitution of single Nitrogen atoms, also interstitial Nitrogen atoms, clusters of Nitrogen atoms and their structural relaxation on the magnetism are discussed. Possible scenarios of engineering a higher Curie temperature are analyzed, with the conclusion that an increase of the Curie temperature is difficult to achieve, requiring a particular attention to the choice of chemistry.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا