ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron diffraction technique was used to study distribution of Co and Cr atoms over different lattice sites as well as lattice paramaters in sigma-phase Co100-xCrx compounds with x = 57.0, 62.7 and 65.8. From the diffractograms recorded in the tempe rature range of 4.2 - 300 K it was found that all five sites A, B, C, D and E are populated by both kinds of atoms. Sites A and D are predominantly occupied by Co atoms while sites B, C and E by Cr atoms. The unit cell parameters a and c, hence the unit cell volume, increase with x, the increase being characteristic of the lattice paramater and temperature. Both a and c show a non-linear increase with temperature.
A series of sigma-phase Fe_{100-x}V_x samples with 34.4 < x < 59.0 were investigated by neutron and X-ray diffraction and Mossbauer spectroscopy (MS) techniques. The first two methods were used for verification of the transformation from alpha to sig ma phase and they also permitted to determine lattice parameters of the unit cell. With MS the Debye temperature, T_D, was evaluated from the temperature dependence of the centre shift, <CS>, assuming its entire temperature dependence originates from the second-order Doppler shift. To our best knowledge, it is the first ever-reported study on T_D in sigma-FeV alloys. Both attice parameters i.e. a and c were revealed to linearly increase with x. T_D shows, however, a non-monotonic behaviour as a function of composition with its extreme values between 425K for x=40 and 600K for x=59. A local maximum of 525K was found to exist at x=43.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا