ترغب بنشر مسار تعليمي؟ اضغط هنا

A global understanding of Active Galactic Nuclei (AGN) and their host galaxies hinges on completing a census of AGN activity without selection biases down to the low-luminosity regime. Toward that goal, we identify AGN within faint radio populations at cosmic noon selected from new ultra-deep, high resolution imaging from the Karl G. Jansky Very Large Array at 6 and 3 GHz. These radio data are spatially coincident with the ultra-deep legacy surveys in the GOODS-S/HUDF region, particularly the unparalleled Chandra 7 Ms X-ray imaging. Combined, these datasets provide a unique basis for a thorough census of AGN, allowing simultaneous identification via (1) high X-ray luminosity; (2) hard X-ray spectra; (3) excess X-ray relative to 6 GHz; (4) mid-IR colors; (5) SED fitting; (6) radio excess via the radio-infrared relation; (7) flat radio spectra via multi-band radio; and (8) optical spectroscopy. We uncover AGN in fully half our faint radio sample, indicating a source density of one AGN arcmin$^{-2}$, with a similar number of radio-undetected AGN identified via X-ray over the same area. Our radio-detected AGN are majority radio-quiet, with radio emission consistent with being powered predominantly by star formation. Nevertheless, we find AGN radio signatures in our sample: $sim12%$ with radio excess indicating radio-loud activity and $sim16%$ of radio-quiet AGN candidates with flat or inverted radio spectra. The latter is a lower limit, pending our upcoming deeper 3 GHz survey. Finally, despite these extensive datasets, this work is likely still missing heavily obscured AGN. We discuss in detail this elusive population and the prospects for completing our AGN census with JWST/MIRI.
Massive galaxy clusters undergo strong evolution from z~1.6 to z~0.5, with overdense environments at high-z characterized by abundant dust-obscured star formation and stellar mass growth which rapidly give way to widespread quenching. Data spanning t he near- to far-infrared (IR) spectrum can directly trace this transformation; however, such studies have largely been limited to the massive galaxy end of cluster populations. In this work, we present ``total light stacking techniques spanning 3.4-500{mu}m aimed at revealing the total cluster IR emission, including low mass members and potential intracluster dust. We detail our procedures for WISE, Spitzer, and Herschel imaging, including corrections to recover the total stacked emission in the case of high fractions of detected galaxies. We apply our stacking techniques to 232 well-studied massive (log M200/Msun~13.8) clusters across multiple z bins, recovering extended cluster emission at all wavelengths, typically at >5sigma. We measure the averaged near- to far-IR radial profiles and SEDs, quantifying the total stellar and dust content. The near-IR radial profiles are well described by an NFW model with a high (c~7) concentration parameter. Dust emission is similarly concentrated, albeit suppressed at small radii (r<0.2Mpc). The measured SEDs lack warm dust, consistent with the colder SEDs expected for low mass galaxies. We derive total stellar masses consistent with the theoretical Mhalo-M_star relation and specific-star formation rates that evolve strongly with redshift, echoing that of massive (log Mstar/Msun>10) cluster galaxies. Separating out the massive galaxy population reveals that the majority of cluster far-IR emission (~70-80%) is provided by the low mass constituents, which differs from field galaxies. This effect may be a combination of mass-dependent quenching and excess dust in low mass cluster galaxies.
The bulk of the stellar growth over cosmic time is dominated by IR luminous galaxies at cosmic noon (z=1-2), many of which harbor a hidden active galactic nucleus (AGN). We use state of the art infrared color diagnostics, combining Spitzer and Hersch el observations, to separate dust-obscured AGN from dusty star forming galaxies (SFGs) in the CANDELS and COSMOS surveys. We calculate 24 micron counts of SFGs, AGN/star forming Composites, and AGN. AGN and Composites dominate the counts above 0.8 mJy at 24 micron, and Composites form at least 25% of an IR sample even to faint detection limits. We develop methods to use the Mid-Infrared Instrument (MIRI) on JWST to identify dust-obscured AGN and Composite galaxies from z~1-2. With the sensitivity and spacing of MIRI filters, we will detect >4 times as many AGN hosts than with Spitzer/IRAC criteria. Any star formation rates based on the 7.7 micron PAH feature (likely to be applied to MIRI photometry) must be corrected for the contribution of the AGN, or the SFR will be overestimated by ~35% for cases where the AGN provides half the IR luminosity and ~50% when the AGN accounts for 90% of the luminosity. Finally, we demonstrate that our MIRI color technique can select AGN with an Eddington ratio of $lambda_{rm Edd}sim0.01$ and will identify AGN hosts with a higher sSFR than X-ray techniques alone. JWST/MIRI will enable critical steps forward in identifying and understanding dust-obscured AGN and the link to their host galaxies.
We present a detailed, multi-wavelength study of star formation (SF) and AGN activity in 11 near-infrared (IR) selected, spectroscopically confirmed, massive ($gtrsim10^{14},rm{M_{odot}}$) galaxy clusters at $1<z<1.75$. Using new, deep $Herschel$/PAC S imaging, we characterize the optical to far-IR spectral energy distributions (SEDs) for IR-luminous cluster galaxies, finding that they can, on average, be well described by field galaxy templates. Identification and decomposition of AGN through SED fittings allows us to include the contribution to cluster SF from AGN host galaxies. We quantify the star-forming fraction, dust-obscured SF rates (SFRs), and specific-SFRs for cluster galaxies as a function of cluster-centric radius and redshift. In good agreement with previous studies, we find that SF in cluster galaxies at $zgtrsim1.4$ is largely consistent with field galaxies at similar epochs, indicating an era before significant quenching in the cluster cores ($r<0.5,$Mpc). This is followed by a transition to lower SF activity as environmental quenching dominates by $zsim1$. Enhanced SFRs are found in lower mass ($10.1< log rm{M_{star}}/rm{M_{odot}}<10.8$) cluster galaxies. We find significant variation in SF from cluster-to-cluster within our uniformly selected sample, indicating that caution should be taken when evaluating individual clusters. We examine AGN in clusters from $z=0.5-2$, finding an excess AGN fraction at $zgtrsim1$, suggesting environmental triggering of AGN during this epoch. We argue that our results $-$ a transition from field-like to quenched SF, enhanced SF in lower mass galaxies in the cluster cores, and excess AGN $-$ are consistent with a co-evolution between SF and AGN in clusters and an increased merger rate in massive haloes at high redshift.
We compare the star formation (SF) activity in cluster galaxies to the field from z=0.3-1.5 using $Herschel$ SPIRE 250$mu$m imaging. We utilize 274 clusters from the IRAC Shallow Cluster Survey (ISCS) selected as rest-frame near-infrared overdensitie s over the 9 square degree Bootes field . This analysis allows us to quantify the evolution of SF in clusters over a long redshift baseline without bias against active cluster systems. Using a stacking analysis, we determine the average star formation rates (SFRs) and specific-SFRs (SSFR=SFR/M$_{star}$) of stellar mass-limited (M>1.3x10$^{10}$ M$_{odot}$), statistical samples of cluster and field galaxies, probing both the star forming and quiescent populations. We find a clear indication that the average SF in cluster galaxies is evolving more rapidly than in the field, with field SF levels at z>1.2 in the cluster cores (r<0.5 Mpc), in good agreement with previous ISCS studies. By quantifying the SF in cluster and field galaxies as an exponential function of cosmic time, we determine that cluster galaxies are evolving ~2 times faster than the field. Additionally, we see enhanced SF above the field level at z~1.4 in the cluster outskirts (r>0.5 Mpc). These general trends in the cluster cores and outskirts are driven by the lower mass galaxies in our sample. Blue cluster galaxies have systematically lower SSFRs than blue field galaxies, but otherwise show no strong differential evolution with respect to the field over our redshift range. This suggests that the cluster environment is both suppressing the star formation in blue galaxies on long time-scales and rapidly transitioning some fraction of blue galaxies to the quiescent galaxy population on short time-scales. We argue that our results are consistent with both strangulation and ram pressure stripping acting in these clusters, with merger activity occurring in the cluster outskirts.
We present a measurement of the average supermassive black hole accretion rate (BHAR) as a function of star formation rate (SFR) for galaxies in the redshift range 0.25<z<0.8. We study a sample of 1,767 far-IR selected star-forming galaxies in the 9 deg^2 Bootes multiwavelength survey field. The SFR is estimated using 250 micron observations from the Herschel Space Observatory, for which the contribution from the AGN is minimal. In this sample, 121 AGNs are directly identified using X-ray or mid-IR selection criteria. We combined these detected AGNs and an X-ray stacking analysis for undetected sources to study the average BHAR for all of the star-forming galaxies in our sample. We find an almost linear relation between the average BHAR (in M_sun/year) and the SFR (in M_sun/year) for galaxies across a wide SFR range 0.85<log SFR<2.56 : log BHAR=(-3.72pm0.52)+(1.05pm0.33) log SFR. This global correlation between SFR and average BHAR is consistent with a simple picture in which SFR and AGN activity are tightly linked over galaxy evolution timescales.
We present a new submm/mm galaxy counterpart identification technique which builds on the use of Spitzer IRAC colors as discriminators between likely counterparts and the general IRAC galaxy population. Using 102 radio- and SMA-confirmed counterparts to AzTEC sources across three fields (GOODS-N, GOODS-S, and COSMOS), we develop a non-parametric IRAC color-color characteristic density distribution (CDD), which, when combined with positional uncertainty information via likelihood ratios, allows us to rank all potential IRAC counterparts around SMGs and calculate the significance of each ranking via the reliability factor. We report all robust and tentative radio counterparts to SMGs, the first such list available for AzTEC/COSMOS, as well as the highest ranked IRAC counterparts for all AzTEC SMGs in these fields as determined by our technique. We demonstrate that the technique is free of radio bias and thus applicable regardless of radio detections. For observations made with a moderate beamsize (~18), this technique identifies ~85 per cent of SMG counterparts. For much larger beamsizes (>30), we report identification rates of 33-49 per cent. Using simulations, we demonstrate that this technique is an improvement over using positional information alone for observations with facilities such as AzTEC on the LMT and SCUBA-2 on JCMT.
We investigate recent star formation in the extended ultraviolet (XUV) disks of five nearby galaxies (NGC 0628, NGC 2090, NGC 2841, NGC 3621, and NGC 5055) using a long wavelength baseline comprised of ultraviolet and mid-infrared imaging from the Ga laxy Evolution Explorer and the Spitzer Infrared Array Camera. We identify 229 unresolved stellar complexes across targeted portions of their XUV disks and utilize spectral energy distribution fitting to measure their stellar ages and masses through comparison with Starburst99 population synthesis models of instantaneous burst populations. We find that the median age of outer disk associations in our sample is ~100 Myr with a large dispersion that spans the entire range of our models (1 Myr-1 Gyr). This relatively evolved state for most associations addresses the observed dearth of Halpha emission in some outer disks, as Halpha can only be observed in star forming regions younger than ~10 Myr. The large age dispersion is robust against variations in extinction (in the range E(B-V)=0-0.3 mag) and variations in the upper end of the stellar Initial Mass Function (IMF). In particular, we demonstrate that the age dispersion is insensitive to steepening of the IMF, up to extreme slopes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا