ترغب بنشر مسار تعليمي؟ اضغط هنا

87 - G.I. Sinkevich 2015
Georg Cantor (1845-1918) was born, and spent the first 11 years of his life in St. Petersburg. The present lecture is devoted to his childhood and his family. Most of these documents were not available before and are now published for the first time.
Secondary electron emission (SEE) from solids plays an important role in many areas of science and technology.1 In recent years, there has been renewed interest in the experimental and theoretical studies of SEE. A recent study proposed that the refl ectivity of very low energy electrons from solid surface approaches unity in the limit of zero electron energy2,3,4, If this was indeed the case, this effect would have profound implications on the formation of electron clouds in particle accelerators,2-4 plasma measurements with electrostatic Langmuir probes, and operation of Hall plasma thrusters for spacecraft propulsion5,6. It appears that, the proposed high electron reflectivity at low electron energies contradicts to numerous previous experimental studies of the secondary electron emission7. The goal of this note is to discuss possible causes of these contradictions.
The specific astrophysical data collected during the last decade causes the need for the modification of the expression for the Einstein-Hilbert action, and several attempts sufficing this need are known. The modification suggested in this paper stem s from the possible anisotropy of space-time and this means the natural change of the simplest scalar in the least action principle. To provide the testable support to this idea, the optic-metrical parametric resonance is regarded - an experiment on the galactic scale based on the interaction between the electromagnetic radiation of cosmic masers and periodical gravitational waves emitted by close double systems or pulsars. Since the effect depends on the space-time metric, the possible anisotropy could reveal itself through observations. To give the corresponding theory predicting the corrections to the expected results of the experiment, the specific mathematical formalism of Finsler geometry was chosen. It was found that in case the anisotropy of the space-time exists, the orientation of the astrophysical systems suitable for observations would show it. In the obtained geodesics equation there is a direction dependent term.
Complementary idempotent paravectors and their ordered compositions, are used to represent multivector basis elements of geometric Clifford algebra for 3D Euclidean space as the states of a geometric byte in a given frame of reference. Two layers of information, available in real numbers, are distinguished. The first layer is a continuous one. It is used to identify spatial orientations of similar geometric objects in the same computational basis. The second layer is a binary one. It is used to manipulate with 8D structure elements inside the computational basis itself. An oriented unit cube representation, rather than a matrix one, is used to visualize an inner structure of basis multivectors. Both layers of information are used to describe unitary operations -- reflections and rotations -- in Euclidian and Hilbert spaces. The results are compared with ones for quantum gates. Some consequences for quantum and classical information technologies are discussed.
We discuss how naturalness predicts the scale of new physics. Two conditions on the scale are considered. The first is the more conservative condition due to Veltman (Acta Phys. Polon. B 12, 437 (1981)). It requires that radiative corrections to the electroweak mass scale would be reasonably small. The second is the condition due to Barbieri and Giudice (Nucl. Phys. B 306, 63 (1988)), which is more popular lately. It requires that physical mass scale would not be oversensitive to the values of the input parameters. We show here that the above two conditions behave differently if higher order corrections are taken into account. Veltmans condition is robust (insensitive to higher order corrections), while Barbieri-Giudice condition changes qualitatively. We conclude that higher order perturbative corrections take care of the fine tuning problem, and, in this respect, scalar field is a natural system. We apply the Barbieri-Giudice condition with higher order corrections taken into account to the Standard Model, and obtain new restrictions on the Higgs boson mass.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا