ترغب بنشر مسار تعليمي؟ اضغط هنا

Knowledge distillation is widely used as a means of improving the performance of a relatively simple student model using the predictions from a complex teacher model. Several works have shown that distillation significantly boosts the students overal l performance; however, are these gains uniform across all data subgroups? In this paper, we show that distillation can harm performance on certain subgroups, e.g., classes with few associated samples. We trace this behaviour to errors made by the teacher distribution being transferred to and amplified by the student model. To mitigate this problem, we present techniques which soften the teacher influence for subgroups where it is less reliable. Experiments on several image classification benchmarks show that these modifications of distillation maintain boost in overall accuracy, while additionally ensuring improvement in subgroup performance.
State-of-the-art transformer models use pairwise dot-product based self-attention, which comes at a computational cost quadratic in the input sequence length. In this paper, we investigate the global structure of attention scores computed using this dot product mechanism on a typical distribution of inputs, and study the principal components of their variation. Through eigen analysis of full attention score matrices, as well as of their individual rows, we find that most of the variation among attention scores lie in a low-dimensional eigenspace. Moreover, we find significant overlap between these eigenspaces for different layers and even different transformer models. Based on this, we propose to compute scores only for a partial subset of token pairs, and use them to estimate scores for the remaining pairs. Beyond investigating the accuracy of reconstructing attention scores themselves, we investigate training transformer models that employ these approximations, and analyze the effect on overall accuracy. Our analysis and the proposed method provide insights into how to balance the benefits of exact pair-wise attention and its significant computational expense.
Transformers are state of the art models in NLP that map a given input sequence of vectors to an output sequence of vectors. However these models are permutation equivariant, and additive position embeddings to the input are used to supply the inform ation about the order of the input tokens. Further, for some tasks, additional additive segment embeddings are used to denote different types of input sentences. Recent works proposed variations of positional encodings with relative position encodings achieving better performance. In this work, we do a systematic study comparing different position encodings and understanding the reasons for differences in their performance. We demonstrate a simple yet effective way to encode position and segment into the Transformer models. The proposed method performs on par with SOTA on GLUE, XTREME and WMT benchmarks while saving computation costs.
Deep Convolutional Neural Networks (CNNs) have long been the architecture of choice for computer vision tasks. Recently, Transformer-based architectures like Vision Transformer (ViT) have matched or even surpassed ResNets for image classification. Ho wever, details of the Transformer architecture -- such as the use of non-overlapping patches -- lead one to wonder whether these networks are as robust. In this paper, we perform an extensive study of a variety of different measures of robustness of ViT models and compare the findings to ResNet baselines. We investigate robustness to input perturbations as well as robustness to model perturbations. We find that when pre-trained with a sufficient amount of data, ViT models are at least as robust as the ResNet counterparts on a broad range of perturbations. We also find that Transformers are robust to the removal of almost any single layer, and that while activations from later layers are highly correlated with each other, they nevertheless play an important role in classification.
Standard training techniques for neural networks involve multiple sources of randomness, e.g., initialization, mini-batch ordering and in some cases data augmentation. Given that neural networks are heavily over-parameterized in practice, such random ness can cause {em churn} -- for the same input, disagreements between predictions of the two models independently trained by the same algorithm, contributing to the `reproducibility challenges in modern machine learning. In this paper, we study this problem of churn, identify factors that cause it, and propose two simple means of mitigating it. We first demonstrate that churn is indeed an issue, even for standard image classification tasks (CIFAR and ImageNet), and study the role of the different sources of training randomness that cause churn. By analyzing the relationship between churn and prediction confidences, we pursue an approach with two components for churn reduction. First, we propose using emph{minimum entropy regularizers} to increase prediction confidences. Second, changes{we present a novel variant of co-distillation approach~citep{anil2018large} to increase model agreement and reduce churn}. We present empirical results showing the effectiveness of both techniques in reducing churn while improving the accuracy of the underlying model.
Despite existing work on ensuring generalization of neural networks in terms of scale sensitive complexity measures, such as norms, margin and sharpness, these complexity measures do not offer an explanation of why neural networks generalize better w ith over-parametrization. In this work we suggest a novel complexity measure based on unit-wise capacities resulting in a tighter generalization bound for two layer ReLU networks. Our capacity bound correlates with the behavior of test error with increasing network sizes, and could potentially explain the improvement in generalization with over-parametrization. We further present a matching lower bound for the Rademacher complexity that improves over previous capacity lower bounds for neural networks.
We present a generalization bound for feedforward neural networks in terms of the product of the spectral norm of the layers and the Frobenius norm of the weights. The generalization bound is derived using a PAC-Bayes analysis.
With a goal of understanding what drives generalization in deep networks, we consider several recently suggested explanations, including norm-based control, sharpness and robustness. We study how these measures can ensure generalization, highlighting the importance of scale normalization, and making a connection between sharpness and PAC-Bayes theory. We then investigate how well the measures explain different observed phenomena.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا