ترغب بنشر مسار تعليمي؟ اضغط هنا

Here, we report on observations of two hard X-ray sources that were originally discovered with the INTEGRAL satellite: IGR J04059+5416 and IGR J08297-4250. We use the Chandra X-ray Observatory to localize the sources and then archival near-IR images to identify the counterparts. Both sources have counterparts in the catalog of extended 2 Micron All-Sky Survey sources, and the counterpart to IGR J04059+5416 has been previously identified as a galaxy. Thus, we place IGR J04059+5416 in the class of Active Galactic Nuclei (AGN), and we suggest that IGR J08297-4250 is also an AGN. If this identification is correct, the near-IR images suggest that the host galaxy of IGR J08297-4250 may be merging with a smaller nearby galaxy. For IGR J04059+5416, the 0.3-86 keV spectrum from Chandra and INTEGRAL is consistent with an absorbed power-law with a column density of N_H = 3.1(+2.0)(-1.5)e22 cm-2 and a photon index of Gamma = 1.4+/-0.7, and we suggest that it is a Seyfert galaxy. For IGR J08297-4250, the photon index is similar, Gamma = 1.5+/-0.8, but the source is highly absorbed (N_H = 6.1(+10.1)(-4.3)e23 cm-2).
The decay of kinetic helicity is studied in numerical models of forced turbulence using either an externally imposed forcing function as an inhomogeneous term in the equations or, alternatively, a term linear in the velocity giving rise to a linear i nstability. The externally imposed forcing function injects energy at the largest scales, giving rise to a turbulent inertial range with nearly constant energy flux while for linearly forced turbulence the spectral energy is maximum near the dissipation wavenumber. Kinetic helicity is injected once a statistically steady state is reached, but it is found to decay on a turbulent time scale regardless of the nature of the forcing and the value of the Reynolds number.
124 - I. V. Zimovets 2008
Using RHESSI and some auxiliary observations we examine possible connections between spatial and temporal morphology of the sources of non-thermal hard X-ray (HXR) emission which revealed minute quasi-periodic pulsations (QPPs) during the two-ribbon flares on 2003 May 29 and 2005 January 19. Microwave emission also reveals the same quasi-periodicity. The sources of non-thermal HXR emission are situated mainly inside the footpoints of the flare arcade loops observed by the TRACE and SOHO instruments. At least one of the sources moves systematically both during the QPP-phase and after it in each flare that allows to examine the sources velocities and the energy release rate via the process of magnetic reconnection. The sources move predominantly parallel to the magnetic inversion line or the appropriate flare ribbon during the QPP-phase whereas the movement slightly changes to more perpendicular regime after the QPPs. Each QPP is emitted from its own position. It is also seen that the velocity and the energy release rate dont correlate well with the flux of the HXR emission calculated from the sources. The sources of microwaves and thermal HXRs are situated near the apex of the loop arcade and are not stationary either. Almost all QPPs and some spikes of HXR emission during the post-QPP-phase reveal the soft-hard-soft spectral behavior indicating separate acts of electrons acceleration and injection, rather than modulation of emission flux by some kinds of magnetohydrodynamic (MHD) oscillations of coronal loops. In all likelihood, the flare scenarios based on the successively firing arcade loops are more preferable to interpret the observations, although we can not conclude exactly what mechanism forces these loops to flare up.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا