ترغب بنشر مسار تعليمي؟ اضغط هنا

Considerable efforts were made in recent years in devising optimization algorithms for influence maximization in networks. Here we ask: When do we need optimization? We use results from statistical mechanics and direct simulations on ER networks, sma ll-world networks, power-law networks and a dataset of real-world networks to characterize the parameter-space region where optimization is required. We show that in both synthetic and real-world networks this optimization region is due to a well known physical phase transition of the network, and that it vanishes as a power-law with the network size. We then show that also from a utility-maximization perspective (when considering the costs of the optimization process), for large networks standard optimization is profitable only in a vanishing parameter region near the phase transition. Finally, we introduce a novel constant-time optimization approach, and demonstrate it through a simple algorithm that manages to give similar results to standard optimization methods in terms of the influenced-set size, while improving the results in terms of the net utility.
We demonstrate a comprehensive framework that accounts for citation dynamics of scientific papers and for the age distribution of references. We show that citation dynamics of scientific papers is nonlinear and this nonlinearity has far-reaching cons equences, such as diverging citation distributions and runaway papers. We propose a nonlinear stochastic dynamic model of citation dynamics based on link copying/redirection mechanism. The model is fully calibrated by empirical data and does not contain free parameters. This model can be a basis for quantitative probabilistic prediction of citation dynamics of individual papers and of the journal impact factor.
We study analytically and numerically Minsky instability as a combination of top-down, bottom-up and peer-to-peer positive feedback loops. The peer-to-peer interactions are represented by the links of a network formed by the connections between firms , contagion leading to avalanches and percolation phase transitions propagating across these links. The global parameter in the top-bottom, bottom-up feedback loop is the interest rate. Before the Minsky moment, in the Minsky Loans Accelerator stage, the relevant bottom parameter representing the individual firms micro-states is the quantity of loans. After the Minsky moment, in the Minsky Crisis Accelerator stage, the relevant bottom parameters are the number of ponzi units / quantity of failures, defaults. We represent the top-bottom, bottom-up interactions on a plot similar to the Marshal-Walras diagram for quantity-price market equilibrium (where the interest rate is the analog of the price). The Minsky instability is then simply emerging as a consequence of the fixed point (the intersection of the supply and demand curves) being unstable (repulsive). In the presence of network effects, one obtains more than one fixed point and a few dynamic regimes (phases). We describe them and their implications for understanding, predicting and steering economic instability.
134 - Sorin Solomon , Natasa Golo 2014
The primordial confrontation underlying the existence of our universe can be conceived as the battle between entropy and complexity. The law of ever-increasing entropy (Boltzmann H-theorem) evokes an irreversible, one-directional evolution (or rather involution) going uniformly and monotonically from birth to death. Since the 19th century, this concept is one of the cornerstones and in the same time puzzles of statistical mechanics. On the other hand, there is the empirical experience where one witnesses the emergence, growth and diversification of new self-organized objects with ever-increasing complexity. When modeling them in terms of simple discrete elements one finds that the emergence of collective complex adaptive objects is a rather generic phenomenon governed by a new type of laws. These emergence laws, not connected directly with the fundamental laws of the physical reality, nor acting in addition to them but acting through them were called by Phil Anderson More is Different, das Maass by Hegel etc. Even though the emergence laws act through the intermediary of the fundamental laws that govern the individual elementary agents, it turns out that different systems apparently governed by very different fundamental laws: gravity, chemistry, biology, economics, social psychology, end up often with similar emergence laws and outcomes. In particular the emergence of adaptive collective objects endows the system with a granular structure which in turn causes specific macroscopic cycles of intermittent fluctuations.
109 - Sorin Solomon , Natasa Golo 2014
Masanao Aoki developed a new methodology for a basic problem of economics: deducing rigorously the macroeconomic dynamics as emerging from the interactions of many individual agents. This includes deduction of the fractal / intermittent fluctuations of macroeconomic quantities from the granularity of the mezo-economic collective objects (large individual wealth, highly productive geographical locations, emergent technologies, emergent economic sectors) in which the micro-economic agents self-organize. In particular, we present some theoretical predictions, which also met extensive validation from empirical data in a wide range of systems: - The fractal Levy exponent of the stock market index fluctuations equals the Pareto exponent of the investors wealth distribution. The origin of the macroeconomic dynamics is therefore found in the granularity induced by the wealth / capital of the wealthiest investors. - Economic cycles consist of a Schumpeter creative destruction pattern whereby the maxima are cusp-shaped while the minima are smooth. In between the cusps, the cycle consists of the sum of 2 crossing exponentials: one decaying and the other increasing. This unification within the same theoretical framework of short term market fluctuations and long term economic cycles offers the perspective of a genuine conceptual synthesis between micro- and macroeconomics. Joining another giant of contemporary science - Phil Anderson - Aoki emphasized the role of rare, large fluctuations in the emergence of macroeconomic phenomena out of microscopic interactions and in particular their non self-averaging, in the language of statistical physics. In this light, we present a simple stochastic multi-sector growth model.
We discuss microscopic mechanisms of complex network growth, with the special emphasis of how these mechanisms can be evaluated from the measurements on real networks. As an example we consider the network of citations to scientific papers. Contrary to common belief that its growth is determined by the linear preferential attachment, our microscopic measurements show that it is driven by the nonlinear autocatalytic growth. This invalidates the scale-free hypothesis for the citation network. The nonlinearity is responsible for a dramatic dynamical phase transition: while the citation lifetime of majority of papers is 6-10 years, the highly-cited papers have practically infinite lifetime.
We perform experimental verification of the preferential attachment model that is commonly accepted as a generating mechanism of the scale-free complex networks. To this end we chose citation network of Physics papers and traced citation history of 4 0,195 papers published in one year. Contrary to common belief, we found that citation dynamics of the individual papers follows the emph{superlinear} preferential attachment, with the exponent $alpha= 1.25-1.3$. Moreover, we showed that the citation process cannot be described as a memoryless Markov chain since there is substantial correlation between the present and recent citation rates of a paper. Basing on our findings we constructed a stochastic growth model of the citation network, performed numerical simulations based on this model and achieved an excellent agreement with the measured citation distributions.
Revolution dynamics is studied through a minimal Ising model with three main influences (fields): personal conservatism (power-law distributed), inter-personal and group pressure, and a global field incorporating peer-to-peer and mass communications, which is generated bottom-up from the revolutionary faction. A rich phase diagram appears separating possible terminal stages of the revolution, characterizing failure phases by the features of the individuals who had joined the revolution. An exhaustive solution of the model is produced, allowing predictions to be made on the revolutions outcome.
52 - Gur Yaari , Sorin Solomon 2010
Most real life systems have a random component: the multitude of endogenous and exogenous factors influencing them result in stochastic fluctuations of the parameters determining their dynamics. These empirical systems are in many cases subject to no ise of multiplicative nature. The special properties of multiplicative noise as opposed to additive noise have been noticed for a long while. Even though apparently and formally the difference between free additive vs. multiplicative random walks consists in just a move from normal to log-normal distributions, in practice the implications are much more far reaching. While in an additive context the emergence and survival of cooperation requires special conditions (especially some level of reward, punishment, reciprocity), we find that in the multiplicative random context the emergence of cooperation is much more natural and effective. We study the various implications of this observation and its applications in various contexts.
We show that a simple and intuitive three-parameter equation fits remarkably well the evolution of the gross domestic product (GDP) in current and constant dollars of many countries during times of recession and recovery. We then argue that this equa tion is the response function of the economy to isolated shocks, hence that it can be used to detect large and small shocks, including those which do not lead to a recession; we also discuss its predictive power. Finally, a two-sector toy model of recession and recovery illustrates how the severity and length of recession depends on the dynamics of transfer rate between the growing and failing parts of the economy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا