ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the results of Mn substitution for Ni in CeNi0.8Bi2, (i.e. CeNi0.8-xMnxBi2). All the samples have an antiferromagnetic ordered state below TN = 5.0 K due to localized 4f-magnetic moment on the Ce ions. Besides this antiferromagnetic orderin g caused by Ce, the magnetic and transport properties are abruptly changed with increasing Mn contents at the boundary composition of x = 0.4. The magnetic state is changed into a ferromagnetic state around 200 K for x > 0.4, where the electrical resistivity is strongly suppressed to become simple metallic. These results of ferromagnetism and metallicity can be explained by the double-exchange mechanism. The mixed valence states of Ni and Mn ions are confirmed by X-ray photoelectron spectroscopy (XPS). For x <= 0.4, the initial Ni3+ state gradually changes to the Ni2+ state with increasing x up to 0.4. On further increase of x > 0.4, the Ni2+ state is substituted for the Mn2+ state, which gradually changes to the final Mn3+ state. We also present an inelastic neutron scattering (INS) measurements on CeNi0.8Bi2 (i.e. x=0) between 1.2 and 12 K. The high energy INS study reveals the presence of two well defined crystal electric field (CEF) excitations near 9 meV and 19 meV at 1.2 K and 6 K, while the low energy INS study reveals the presence of quasi-elastic scattering above 4 K. We will discuss our INS results of CeNi0.8Bi2 based on the crystal electric field model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا