ترغب بنشر مسار تعليمي؟ اضغط هنا

456 - Songhu Wang , Hui Zhang , Xu Zhou 2015
The Chinese Small Telescope ARray (CSTAR) is the first telescope facility built at Dome A, Antarctica. During the 2008 observing season, the installation provided long-baseline and high-cadence photometric observations in the i-band for 18,145 target s within 20 deg2 CSTAR field around the South Celestial Pole for the purpose of monitoring the astronomical observing quality of Dome A and detecting various types of photometric variability. Using sensitive and robust detection methods, we discover 274 potential variables from this data set, 83 of which are new discoveries. We characterize most of them, providing the periods, amplitudes and classes of variability. The catalog of all these variables is presented along with the discussion of their statistical properties.
The Chinese Small Telescope ARray (CSTAR) has observed an area around the Celestial South Pole at Dome A since 2008. About $20,000$ light curves in the i band were obtained lasting from March to July, 2008. The photometric precision achieves about 4 mmag at i = 7.5 and 20 mmag at i = 12 within a 30 s exposure time. These light curves are analyzed using Lomb--Scargle, Phase Dispersion Minimization, and Box Least Squares methods to search for periodic signals. False positives may appear as a variable signature caused by contaminating stars and the observation mode of CSTAR. Therefore the period and position of each variable candidate are checked to eliminate false positives. Eclipsing binaries are removed by visual inspection, frequency spectrum analysis and locally linear embedding technique. We identify 53 eclipsing binaries in the field of view of CSTAR, containing 24 detached binaries, 8 semi-detached binaries, 18 contact binaries, and 3 ellipsoidal variables. To derive the parameters of these binaries, we use the Eclipsing Binaries via Artificial Intelligence (EBAI) method. The primary and the secondary eclipse timing variations (ETVs) for semi-detached and contact systems are analyzed. Correlated primary and secondary ETVs confirmed by false alarm tests may indicate an unseen perturbing companion. Through ETV analysis, we identify two triple systems (CSTAR J084612.64-883342.9 and CSTAR J220502.55-895206.7). The orbital parameters of the third body in CSTAR J220502.55-895206.7 are derived using a simple dynamical model.
The Chinese Small Telescope ARray (CSTAR) is a group of four identical, fully automated, static 14.5 cm telescopes. CSTAR is located at Dome A, Antarctica and covers 20 square degree of sky around the South Celestial Pole. The installation is designe d to provide high-cadence photometry for the purpose of monitoring the quality of the astronomical observing conditions at Dome A and detecting transiting exoplanets. CSTAR has been operational since 2008, and has taken a rich and high-precision photometric data set of 10,690 stars. In the first observing season, we obtained 291,911 qualified science frames with 20-second integrations in the i-band. Photometric precision reaches about 4 mmag at 20-second cadence at i=7.5, and is about 20 mmag at i=12. Using robust detection methods, ten promising exoplanet candidates were found. Four of these were found to be giants using spectroscopic follow-up. All of these transit candidates are presented here along with the discussion of their detailed properties as well as the follow-up observations.
Determining the orbital eccentricity of an extrasolar planet is critically important for understanding the systems dynamical environment and history. However, eccentricity is often poorly determined or entirely mischaracterized due to poor observatio nal sampling, low signal-to-noise, and/or degeneracies with other planetary signals. Some systems previously thought to contain a single, moderate-eccentricity planet have been shown, after further monitoring, to host two planets on nearly-circular orbits. We investigate published apparent single-planet systems to see if the available data can be better fit by two lower-eccentricity planets. We identify nine promising candidate systems and perform detailed dynamical tests to confirm the stability of the potential new multiple-planet systems. Finally, we compare the expected orbits of the single- and double-planet scenarios to better inform future observations of these interesting systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا