ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a detailed investigation of the magnetic properties in SiC single crystals bombarded with neon ions. Through careful measuring of the magnetization of virgin and irradiated SiC, we decompose the magnetization of SiC into paramagnetic, supe rparamagnetic, and ferromagnetic contributions. The ferromagnetic contribution persists well above room temperature and exhibits a pronounced magnetic anisotropy. We qualitatively explain the magnetic properties as a result of the intrinsic clustering tendency of defects.
One of the solutions enabling performance progress, which can overcome the downsizing limit in silicon technology, is the integration of different functional optoelectronic devices within a single chip. Silicon with its indirect band gap has poor opt ical properties, which is its main drawback. Therefore, a different material has to be used for the on-chip optical interconnections, e.g. a direct band gap III-V compound semiconductor material. In the paper we present the synthesis of single crystalline InP nanodots (NDs) on silicon using combined ion implantation and millisecond flash lamp annealing techniques. The optical and microstructural investigations reveal the growth of high-quality (100)-oriented InP nanocrystals. The current-voltage measurements confirm the formation of an n-p heterojunction between the InP NDs and silicon. The main advantage of our method is its integration with large-scale silicon technology, which allows applying it for Si-based optoelectronic devices.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا