ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a detailed investigation of the magnetic and superconducting properties of Ca1-xNaxFe2As2 single crystals with x = 0.00, 0.35, 0.50, and 0.67 by means of the local probe techniques Moessbauer spectroscopy and muon spin relaxation experimen ts. With increasing Na substitution level, the magnetic order parameter as well as the magneto-structural phase transition are suppressed. For x = 0.50 we find a microscopic coexistence of magnetic and superconducting phases accompanied by a reduction of the magnetic order parameter below the superconducting transition temperature Tc. A systematic comparison with other 122 pnictides reveals a square-root correlation between the reduction of the magnetic order parameter and the ratio of the transition temperatures, Tc/TN, which can be understood in the framework of a Landau theory. In the optimally doped sample with Tc = 34 K, diluted magnetism is found and the temperature dependence of the penetration depth and superfluid density are obtained, proving the presence of two superconducting s-wave gaps
We present our results of a local probe study on EuFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$ single crystals with $x$=0.13, 0.19 and 0.28 by means of muon spin rotation and ${}^{57}$Fe Mossbauer spectroscopy. We focus our discussion on the sample with $x$=0. 19 viz. at the optimal substitution level, where bulk superconductivity ($T_{text{SC}}=28$ K) sets in above static europium order ($T^{text{Eu}}=20$K) but well below the onset of the iron antiferromagnetic (AFM) transition ($sim$100 K). We find enhanced spin dynamics in the Fe sublattice closely above $T_{text{SC}}$ and propose that these are related to enhanced Eu fluctuations due to the evident coupling of both sublattices observed in our experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا