ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmological simulations still lack numerical resolution or physical processes to simulate dwarf galaxies in sufficient details. Accurate numerical simulations of individual dwarf galaxies are thus still in demand. We aim at (i) studying in detail th e coupling between stars and gas in a galaxy, exploiting the so-called stellar hydrodynamical approach, and (ii) studying the chemo-dynamical evolution of individual galaxies starting from self-consistently calculated initial gas distributions. We present a novel chemo-dynamical code in which the dynamics of gas is computed using the usual hydrodynamics equations, while the dynamics of stars is described by the stellar hydrodynamics approach, which solves for the first three moments of the collisionless Boltzmann equation. The feedback from stellar winds and dying stars is followed in detail. In particular, a novel and detailed approach has been developed to trace the aging of various stellar populations, which enables an accurate calculation of the stellar feedback depending on the stellar age. We build initial equilibrium models of dwarf galaxies that take gas self-gravity into account and present different levels of rotational support. Models with high rotational support develop prominent bipolar outflows; a newly-born stellar population in these models is preferentially concentrated to the galactic midplane. Models with little rotational support blow away a large fraction of the gas and the resulting stellar distribution is extended and diffuse. The stellar dynamics turns out to be a crucial aspect of galaxy evolution. If we artificially suppress stellar dynamics, supernova explosions occur in a medium heated and diluted by the previous activity of stellar winds, thus artificially enhancing the stellar feedback (abridged).
We construct a series of model galaxies in rotational equilibrium consisting of gas, stars, and a fixed dark matter (DM) halo and study how these equilibrium systems depend on the mass and form of the DM halo, gas temperature, non-thermal and rotatio n support against gravity, and also on the redshift of galaxy formation. For every model galaxy we find the minimum gas mass M_g^min required to achieve a state in which star formation (SF) is allowed according to contemporary SF criteria. The obtained M_g^min--M_DM relations are compared against the baryon-to-DM mass relation M_b--M_DM inferred from the LambdaCDM theory and WMAP4 data. Our aim is to construct realistic initial models of dwarf galaxies (DGs), which take into account the gas self-gravity and can be used as a basis to study the dynamical and chemical evolution of DGs. Rotating equilibria are found by solving numerically the steady-state momentum equation for the gas component in the combined gravitational potential of gas, stars, and DM halo using a forward substitution procedure. We find that for a given M_DM the value of M_g^min depends crucially on the gas temperature T_g, gas spin parameter alpha, degree of non-thermal support sigma_eff, and somewhat on the redshift for galaxy formation z_gf. Depending on the actual values of T_g, alpha, sigma_eff, and z_gf, model galaxies may have M_g^min that are either greater or smaller than M_b. Galaxies with M_DM ga 10^9 M_sun are usually characterized by M_g^min la M_b, implying that SF in such objects is a natural outcome as the required gas mass is consistent with what is available according to the LambdaCDM theory. On the other hand, models with M_DM la 10^9 M_sun are often characterized by M_g^min >> M_b, implying that they need much more gas than available to achieve a state in which SF is allowed. Abridged.
It is well established that the [alpha/Fe] ratios in elliptical galaxies increase with galaxy mass. This relation holds also for early-type dwarf galaxies, although it seems to steepen at low masses. The [alpha/Fe] vs. mass relation can be explained assuming that smaller galaxies form over longer timescales (downsizing), allowing a larger amount of Fe (mostly produced by long-living Type Ia Supernovae) to be released and incorporated into newly forming stars. Another way to obtain the same result is by using a flatter initial mass function (IMF) in large galaxies, increasing in this way the number of Type II Supernovae and therefore the production rate of alpha-elements. The integrated galactic initial mass function (IGIMF) theory predicts that the higher the star formation rate, the flatter the IMF. We have checked, by means of semi-analytical calculations, that the IGIMF theory, combined with the downsizing effect (i.e. the shorter duration of the star formation in larger galaxies), well reproduces the observed [alpha/Fe] vs. mass relation. In particular, we show a steepening of this relation in dwarf galaxies, in accordance with the available observations.
Advanced observational facilities allow to trace back the chemical evolution of the Universe, on the one hand, from local objects of different ages and, secondly, by direct observations of redshifted objects. The chemical enrichment serves as one of the cornerstones of cosmological evolution. In order to understand this chemical evolution in morphologically different astrophysical objects models are constructed based on analytical descriptions or numerical methods. For the comparison of their chemical issues, as there are element abundances, gradients, and ratios, with observations not only the present-day values are used but also their temporal evolution from the first era of metal enrichment. Here we will provide some insight into basics of chemical evolution models, highlight advancements, and discuss a few applications.
59 - Gerhard Hensler 2007
By a few but important examples as models of combined radiative and wind-driven HII regions and galactic winds we demonstrate the importance of refined small-to-medium scale studies of chemo-dynamical effects. These processes determine the internal d ynamics and energetic of the ISM and affect its observational signatures, e.g. by abundance contributions, but are not yet reliably and satisfactorily explored.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا