ترغب بنشر مسار تعليمي؟ اضغط هنا

(Abridged) The tidal stirring model posits the formation of dSph galaxies via the tidal interactions between rotationally-supported dwarfs and MW-sized host galaxies. Using a set of collisionless N-body simulations, we investigate the efficiency of t he tidal stirring mechanism. We explore a wide variety of dwarf orbital configurations and initial structures and demonstrate that in most cases the disky dwarfs experience significant mass loss and their stellar components undergo a dramatic morphological and dynamical transformation: from disks to bars and finally to pressure-supported spheroidal systems with kinematic and structural properties akin to those of the classic dSphs in the Local Group (LG). Our results suggest that such tidal transformations should be common occurrences within the currently favored cosmological paradigm and highlight the key factor responsible for an effective metamorphosis to be the strength of the tidal shocks at the pericenters of the orbit. We demonstrate that the combination of short orbital times and small pericenters, characteristic of dwarfs being accreted at high redshift, induces the strongest transformations. Our models also indicate that the transformation efficiency is affected significantly by the structure of the progenitor disky dwarfs. Lastly, we find that the dwarf remnants satisfy the relation Vmax = sqrt{3} * sigma, where sigma is the 1D, central stellar velocity dispersion and Vmax is the maximum halo circular velocity, with intriguing implications for the missing satellites problem. Overall, we conclude that the action of tidal forces from the hosts constitutes a crucial evolutionary mechanism for shaping the nature of dwarf galaxies in environments such as that of the LG. Environmental processes of this type should thus be included as ingredients in models of dwarf galaxy formation and evolution.
238 - Simone Callegari 2009
We examine the pairing process of supermassive black holes (SMBHs) down to scales of 20-100 pc using a set of N-body/SPH simulations of binary mergers of disk galaxies with mass ratios of 1:4 and 1:10. Our numerical experiments are designed to repres ent merger events occurring at various cosmic epochs. The initial conditions of the encounters are consistent with the LambdaCDM paradigm of structure formation, and the simulations include the effects of radiative cooling, star formation, and supernovae feedback. We find that the pairing of SMBHs depends sensitively on the amount of baryonic mass preserved in the center of the companion galaxies during the last phases of the merger. In particular, due to the combination of gasdynamics and star formation, we find that a pair of SMBHs can form in 1:10 minor mergers provided that galaxies are relatively gas-rich (gas fractions of 30% of the disk mass) and that the mergers occur at relatively high redshift (z~3), when dynamical friction timescales are shorter. Since 1:10 mergers are most common events during the assembly of galaxies, and mergers are more frequent at high redshift when galaxies are also more gas-rich, our results have positive implications for future gravitational wave experiments such as the Laser Interferometer Space Antenna.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا