ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper studies the extremum seeking control (ESC) problem for a class of constrained nonlinear systems. Specifically, we focus on a family of constraints allowing to reformulate the original nonlinear system in the so-called input-output normal f orm. To steer the system to optimize a performance function without knowing its explicit form, we propose a novel numerical optimization-based extremum seeking control (NOESC) design consisting of a constrained numerical optimization method and an inversion based feedforward controller. In particular, a projected gradient descent algorithm is exploited to produce the state sequence to optimize the performance function, whereas a suitable boundary value problem accommodates the finite-time state transition between each two consecutive points of the state sequence. Compared to available NOESC methods, the proposed approach i) can explicitly deal with output constraints; ii) the performance function can consider a direct dependence on the states of the internal dynamics; iii) the internal dynamics do not have to be necessarily stable. The effectiveness of the proposed ESC scheme is shown through extensive numerical simulations.
Planning and reinforcement learning are two key approaches to sequential decision making. Multi-step approximate real-time dynamic programming, a recently successful algorithm class of which AlphaZero [Silver et al., 2018] is an example, combines bot h by nesting planning within a learning loop. However, the combination of planning and learning introduces a new question: how should we balance time spend on planning, learning and acting? The importance of this trade-off has not been explicitly studied before. We show that it is actually of key importance, with computational results indicating that we should neither plan too long nor too short. Conceptually, we identify a new spectrum of planning-learning algorithms which ranges from exhaustive search (long planning) to model-free RL (no planning), with optimal performance achieved midway.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا