ترغب بنشر مسار تعليمي؟ اضغط هنا

A new technique is demonstrated for carrying out exact positive-P phase-space simulations of the coherent Ising machine quantum computer. By suitable design of the coupling matrix, general hard optimization problems can be solved. Here, quantum simul ations of a feedback type of photonic parametric network are carried out, which is the implementation of the coherent Ising machine. Results for success rates are obtained using a weighted algorithm for quantum simulations of quantum feedback devices.
Stochastic equations play an important role in computational science, due to their ability to treat a wide variety of complex statistical problems. However, current algorithms are strongly limited by their sampling variance, which scales proportionat e to 1/N_S for N_S samples. In this paper, we obtain a new class of variance reduction methods for treating stochastic equations, called parallel optimized sampling. The objective of parallel optimized sampling is to reduce the sampling variance in the observables of an ensemble of stochastic trajectories. This is achieved through calculating a finite set of observables - typically statistical moments - in parallel, and minimizing the errors compared to known values. The algorithm is both numerically efficient and unbiased. Importantly, it does not increase the errors in higher order moments, and generally reduces such errors as well. The same procedure is applied both to initial ensembles and to changes in a finite time-step. Results of these methods show that errors in initially optimized moments can be reduced to the machine precision level, typically around 10^(-16) in current hardware. For nonlinear stochastic equations, sampled moment errors during time-evolution are larger than this, due to error propagation effects. Even so, we provide evidence for error reductions of up to two orders of magnitude in a nonlinear equation example, for low order moments, which is a large practical benefit. The sampling variance typically scales as 1/N_S, but with the advantage of a very much smaller prefactor than for standard, non-optimized methods.
We have revisited glueball mixing with the pseudoscalar mesons in the MIT bag model scheme. The calculation has been performed in the spherical cavity approximation to the bag using two different fermion propagators, the cavity and the free propagato rs. We obtain a very small probability of mixing for the eta at the level of $0.04-0.1% and a bigger for the eta at the level of 4-12%. Our results differ from previous calculations in the same scheme but seem to agree with the experimental analysis. We discuss the origin of our difference which stems from the treatment of our time integrations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا