ترغب بنشر مسار تعليمي؟ اضغط هنا

In this article we investigate the dynamics of a single negatively charged nitrogen-vacancy center (NV-) coupled to the spin of the nucleus of a 15-nitrogen atom and show that high fidelity gate operations are possible without the need for complicate d composite pulse sequences. These operations include both the electron and nuclear spin rotations, as well as an entangling gate between them. These are experimentally realizable gates with current technology of sufficiently high fidelities that they can be used to build graph states for quantum information processing tasks.
In recent years, surface codes have become a leading method for quantum error correction in theoretical large scale computational and communications architecture designs. Their comparatively high fault-tolerant thresholds and their natural 2-dimensio nal nearest neighbour (2DNN) structure make them an obvious choice for large scale designs in experimentally realistic systems. While fundamentally based on the toric code of Kitaev, there are many variants, two of which are the planar- and defect- based codes. Planar codes require fewer qubits to implement (for the same strength of error correction), but are restricted to encoding a single qubit of information. Interactions between encoded qubits are achieved via transversal operations, thus destroying the inherent 2DNN nature of the code. In this paper we introduce a new technique enabling the coupling of two planar codes without transversal operations, maintaining the 2DNN of the encoded computer. Our lattice surgery technique comprises splitting and merging planar code surfaces, and enables us to perform universal quantum computation (including magic state injection) while removing the need for braided logic in a strictly 2DNN design, and hence reduces the overall qubit resources for logic operations. Those resources are further reduced by the use of a rotated lattice for the planar encoding. We show how lattice surgery allows us to distribute encoded GHZ states in a more direct (and overhead friendly) manner, and how a demonstration of an encoded CNOT between two distance 3 logical states is possible with 53 physical qubits, half of that required in any other known construction in 2D.
We consider the task of intrinsic control system identification for quantum devices. The problem of experimental determination of subspace confinement is considered, and simple general strategies for full Hamiltonian identification and decoherence ch aracterization of a controlled two-level system are presented.
We give an overview of different paradigms for control of quantum systems and their applications, illustrated with specific examples. We further discuss the implications of fault-tolerance requirements for quantum process engineering using optimal co ntrol, and explore the possibilities for architecture simplification and effective control using a minimum number of simple switch actuators.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا