ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a reinforcement learning (RL) approach for robust optimisation of risk-aware performance criteria. To allow agents to express a wide variety of risk-reward profiles, we assess the value of a policy using rank dependent expected utility (RD EU). RDEU allows the agent to seek gains, while simultaneously protecting themselves against downside events. To robustify optimal policies against model uncertainty, we assess a policy not by its distribution, but rather, by the worst possible distribution that lies within a Wasserstein ball around it. Thus, our problem formulation may be viewed as an actor choosing a policy (the outer problem), and the adversary then acting to worsen the performance of that strategy (the inner problem). We develop explicit policy gradient formulae for the inner and outer problems, and show its efficacy on three prototypical financial problems: robust portfolio allocation, optimising a benchmark, and statistical arbitrage
Risk contributions of portfolios form an indispensable part of risk adjusted performance measurement. The risk contribution of a portfolio, e.g., in the Euler or Aumann-Shapley framework, is given by the partial derivatives of a risk measure applied to the portfolio return in direction of the asset weights. For risk measures that are not positively homogeneous of degree 1, however, known capital allocation principles do not apply. We study the class of lambda quantile risk measures, that includes the well-known Value-at-Risk as a special case, but for which no known allocation rule is applicable. We prove differentiability and derive explicit formulae of the derivatives of lambda quantiles with respect to their portfolio composition, that is their risk contribution. For this purpose, we define lambda quantiles on the space of portfolio compositions and consider generic (also non-linear) portfolio operators. We further derive the Euler decomposition of lambda quantiles for generic portfolios and show that lambda quantiles are homogeneous in the space of portfolio compositions, with a homogeneity degree that depends on the portfolio composition and the lambda function. This result is in stark contrast to the positive homogeneity properties of risk measures defined on the space of random variables which admit a constant homogeneity degree. We introduce a generalised version of Euler contributions and Euler allocation rule, which are compatible with risk measures of any homogeneity degree and non-linear portfolios. We further provide financial interpretations of the homogeneity degree of lambda quantiles and introduce the notion of event-specific homogeneity of portfolio operators.
We study the problem of active portfolio management where an investor aims to outperform a benchmark strategys risk profile while not deviating too far from it. Specifically, an investor considers alternative strategies whose terminal wealth lie with in a Wasserstein ball surrounding a benchmarks -- being distributionally close -- and that have a specified dependence/copula -- tying state-by-state outcomes -- to it. The investor then chooses the alternative strategy that minimises a distortion risk measure of terminal wealth. In a general (complete) market model, we prove that an optimal dynamic strategy exists and provide its characterisation through the notion of isotonic projections. We further propose a simulation approach to calculate the optimal strategys terminal wealth, making our approach applicable to a wide range of market models. Finally, we illustrate how investors with different copula and risk preferences invest and improve upon the benchmark using the Tail Value-at-Risk, inverse S-shaped, and lower- and upper-tail distortion risk measures as examples. We find that investors optimal terminal wealth distribution has larger probability masses in regions that reduce their risk measure relative to the benchmark while preserving the benchmarks structure.
79 - Silvana Pesenti , Qiuqi Wang , 2020
Optimization of distortion riskmetrics with distributional uncertainty has wide applications in finance and operations research. Distortion riskmetrics include many commonly applied risk measures and deviation measures, which are not necessarily mono tone or convex. One of our central findings is a unifying result that allows us to convert an optimization of a non-convex distortion riskmetric with distributional uncertainty to a convex one, leading to great tractability. The key to the unifying equivalence result is the novel notion of closedness under concentration of sets of distributions. Our results include many special cases that are well studied in the optimization literature, including but not limited to optimizing probabilities, Value-at-Risk, Expected Shortfall, and Yaaris dual utility under various forms of distributional uncertainty. We illustrate our theoretical results via applications to portfolio optimization, optimization under moment constraints, and preference robust optimization.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا