ترغب بنشر مسار تعليمي؟ اضغط هنا

Despite the constant advances in computer vision, integrating modern single-image detectors in real-time handgun alarm systems in video-surveillance is still debatable. Using such detectors still implies a high number of false alarms and false negati ves. In this context, most existent studies select one of the latest single-image detectors and train it on a better dataset or use some pre-processing, post-processing or data-fusion approach to further reduce false alarms. However, none of these works tried to exploit the temporal information present in the videos to mitigate false detections. This paper presents a new system, called MULTI Confirmation-level Alarm SysTem based on Convolutional Neural Networks (CNN) and Long Short Term Memory networks (LSTM) (MULTICAST), that leverages not only the spacial information but also the temporal information existent in the videos for a more reliable handgun detection. MULTICAST consists of three stages, i) a handgun detection stage, ii) a CNN-based spacial confirmation stage and iii) LSTM-based temporal confirmation stage. The temporal confirmation stage uses the positions of the detected handgun in previous instants to predict its trajectory in the next frame. Our experiments show that MULTICAST reduces by 80% the number of false alarms with respect to Faster R-CNN based-single-image detector, which makes it more useful in providing more effective and rapid security responses.
It is widely known that very small datasets produce overfitting in Deep Neural Networks (DNNs), i.e., the network becomes highly biased to the data it has been trained on. This issue is often alleviated using transfer learning, regularization techniq ues and/or data augmentation. This work presents a new approach, independent but complementary to the previous mentioned techniques, for improving the generalization of DNNs on very small datasets in which the involved classes share many visual features. The proposed methodology, called FuCiTNet (Fusion Class inherent Transformations Network), inspired by GANs, creates as many generators as classes in the problem. Each generator, $k$, learns the transformations that bring the input image into the k-class domain. We introduce a classification loss in the generators to drive the leaning of specific k-class transformations. Our experiments demonstrate that the proposed transformations improve the generalization of the classification model in three diverse datasets.
The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benef ited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.
The recognition of coral species based on underwater texture images pose a significant difficulty for machine learning algorithms, due to the three following challenges embedded in the nature of this data: 1) datasets do not include information about the global structure of the coral; 2) several species of coral have very similar characteristics; and 3) defining the spatial borders between classes is difficult as many corals tend to appear together in groups. For this reason, the classification of coral species has always required an aid from a domain expert. The objective of this paper is to develop an accurate classification model for coral texture images. Current datasets contain a large number of imbalanced classes, while the images are subject to inter-class variation. We have analyzed 1) several Convolutional Neural Network (CNN) architectures, 2) data augmentation techniques and 3) transfer learning. We have achieved the state-of-the art accuracies using different variations of ResNet on the two current coral texture datasets, EILAT and RSMAS.
There is a growing demand for accurate high-resolution land cover maps in many fields, e.g., in land-use planning and biodiversity conservation. Developing such maps has been performed using Object-Based Image Analysis (OBIA) methods, which usually r each good accuracies, but require a high human supervision and the best configuration for one image can hardly be extrapolated to a different image. Recently, the deep learning Convolutional Neural Networks (CNNs) have shown outstanding results in object recognition in the field of computer vision. However, they have not been fully explored yet in land cover mapping for detecting species of high biodiversity conservation interest. This paper analyzes the potential of CNNs-based methods for plant species detection using free high-resolution Google Earth T M images and provides an objective comparison with the state-of-the-art OBIA-methods. We consider as case study the detection of Ziziphus lotus shrubs, which are protected as a priority habitat under the European Union Habitats Directive. According to our results, compared to OBIA-based methods, the proposed CNN-based detection model, in combination with data-augmentation, transfer learning and pre-processing, achieves higher performance with less human intervention and the knowledge it acquires in the first image can be transferred to other images, which makes the detection process very fast. The provided methodology can be systematically reproduced for other species detection.
Current surveillance and control systems still require human supervision and intervention. This work presents a novel automatic handgun detection system in videos appropriate for both, surveillance and control purposes. We reformulate this detection problem into the problem of minimizing false positives and solve it by building the key training data-set guided by the results of a deep Convolutional Neural Networks (CNN) classifier, then assessing the best classification model under two approaches, the sliding window approach and region proposal approach. The most promising results are obtained by Faster R-CNN based model trained on our new database. The best detector show a high potential even in low quality youtube videos and provides satisfactory results as automatic alarm system. Among 30 scenes, it successfully activates the alarm after five successive true positives in less than 0.2 seconds, in 27 scenes. We also define a new metric, Alarm Activation per Interval (AApI), to assess the performance of a detection model as an automatic detection system in videos.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا