ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the Suzaku/XIS and HXD and Chandra/ACIS-I results on the X-ray spectra of the Phoenix cluster at the redshift $z=0.596$. The spectrum of the intracluster medium (ICM) is well-reproduced with the emissions from a low temperature ($sim3.0$,ke V and $sim0.76$,solar) and a high temperature ($sim11$,keV and $sim0.33$,solar) plasmas; the former is localized at the cluster core, while the latter distributes over the cluster. In addition to these ICM emissions, a strongly absorbed power-law component is found, which is due to an active galactic nucleus (AGN) in the cluster center. The absorption column density and unobscured luminosity of the AGN are $sim3.2times10^{23}$,cm$^{-2}$ and $sim4.7times10^{45}$,ergs,s$^{-1}$ (2-10,keV), respectively. Furthermore, a neutral iron (ion{Fe}{1}) K-shell line is discovered for the first time with the equivalent width (EW) of $sim150$,eV at the rest frame. The column density and the EW of the ion{Fe}{1} line are exceptionally large for such a high luminosity AGN, and hence the AGN is classified as a type 2 quasi-stellar object (QSO). We speculate that the significant fraction of the ICM cooled gas would be consumed to maintain the torus and to activate the type 2 QSO. The Phoenix cluster has a massive starburst in the central galaxy, indicating suppression in the cooling flow is less effective. This may be because the onset of the latest AGN feedback has occurred recently and it has not yet been effective. Alternatively, the AGN feedback is predominantly in radiative-mode not in kinetic-mode and the torus may work as a shield to reduce its effect.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا