ترغب بنشر مسار تعليمي؟ اضغط هنا

240 - Guangwei Gao , Shuonan Wu 2021
In the past decade, there are many works on the finite element methods for the fully nonlinear Hamilton--Jacobi--Bellman (HJB) equations with Cordes condition. The linearised systems have large condition numbers, which depend not only on the mesh siz e, but also on the parameters in the Cordes condition. This paper is concerned with the design and analysis of auxiliary space preconditioners for the linearised systems of $C^0$ finite element discretization of HJB equations [Calcolo, 58, 2021]. Based on the stable decomposition on the auxiliary spaces, we propose both the additive and multiplicative preconditoners which converge uniformly in the sense that the resulting condition number is independent of both the number of degrees of freedom and the parameter $lambda$ in Cordes condition. Numerical experiments are carried out to illustrate the efficiency of the proposed preconditioners.
Wave propagation problems have many applications in physics and engineering, and the stochastic effects are important in accurately modeling them due to the uncertainty of the media. This paper considers and analyzes a fully discrete finite element m ethod for a class of nonlinear stochastic wave equations, where the diffusion term is globally Lipschitz continuous while the drift term is only assumed to satisfy weaker conditions as in [11]. The novelties of this paper are threefold. First, the error estimates cannot not be directly obtained if the numerical scheme in primal form is used. The numerical scheme in mixed form is introduced and several H{o}lder continuity results of the strong solution are proved, which are used to establish the error estimates in both $L^2$ norm and energy norms. Second, two types of discretization of the nonlinear term are proposed to establish the $L^2$ stability and energy stability results of the discrete solutions. These two types of discretization and proper test functions are designed to overcome the challenges arising from the stochastic scaling in time issues and the nonlinear interaction. These stability results play key roles in proving the probability of the set on which the error estimates hold approaches one. Third, higher order moment stability results of the discrete solutions are proved based on an energy argument and the underlying energy decaying property of the method. Numerical experiments are also presented to show the stability results of the discrete solutions and the convergence rates in various norms.
We propose and analyze a robust BPX preconditioner for the integral fractional Laplacian on bounded Lipschitz domains. For either quasi-uniform grids or graded bisection grids, we show that the condition numbers of the resulting systems remain unifor mly bounded with respect to both the number of levels and the fractional power. The results apply also to the spectral and censored fractional Laplacians.
A general analysis framework is presented in this paper for many different types of finite element methods (including various discontinuous Galerkin methods). For second order elliptic equation, this framework employs $4$ different discretization var iables, $u_h, bm{p}_h, check u_h$ and $check p_h$, where $u_h$ and $bm{p}_h$ are for approximation of $u$ and $bm{p}=-alpha abla u$ inside each element, and $ check u_h$ and $check p_h$ are for approximation of residual of $u$ and $bm{p} cdot bm{n}$ on the boundary of each element. The resulting 4-field discretization is proved to satisfy inf-sup conditions that are uniform with respect to all discretization and penalization parameters. As a result, most existing finite element and discontinuous Galerkin methods can be analyzed using this general framework by making appropriate choices of discretization spaces and penalization parameters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا