ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong interactions between single spins and photons are essential for quantum networks and distributed quantum computation. They provide the necessary interface for entanglement distribution, non-destructive quantum measurements, and strong photon-p hoton interactions. Achieving spin-photon interactions in a solid-state device could enable compact chip-integrated quantum circuits operating at gigahertz bandwidths. Many theoretical works have suggested using spins embedded in nanophotonic structures to attain this high-speed interface. These proposals exploit strong light-matter interactions to implement a quantum switch, where the spin flips the state of the photon and a photon flips the spin-state. However, such a switch has not yet been realized using a solid-state spin system. Here, we report an experimental realization of a spin-photon quantum switch using a single solid-state spin embedded in a nanophotonic cavity. We show that the spin-state strongly modulates the cavity reflection coefficient, which conditionally flips the polarization state of a reflected photon on picosecond timescales. We also demonstrate the complementary effect where a single photon reflected from the cavity coherently rotates the spin. These strong spin-photon interactions open up a promising direction for solid-state implementations of high-speed quantum networks and on-chip quantum information processors using nanophotonic devices.
We demonstrate reversible strain-tuning of a quantum dot strongly coupled to a photonic crystal cavity. We observe an average redshift of 0.45 nm for quantum dots located inside the cavity membrane, achieved with an electric field of 15 kV/cm applied to a piezo-electric actuator. Using this technique, we demonstrate the ability to tune a quantum dot into resonance with a photonic crystal cavity in the strong coupling regime, resulting in a clear anti-crossing. The bare cavity resonance is less sensitive to strain than the quantum dot and shifts by only 0.078 nm at the maximum applied electric field.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا