ترغب بنشر مسار تعليمي؟ اضغط هنا

We show how to teach machines to paint like human painters, who can use a small number of strokes to create fantastic paintings. By employing a neural renderer in model-based Deep Reinforcement Learning (DRL), our agents learn to determine the positi on and color of each stroke and make long-term plans to decompose texture-rich images into strokes. Experiments demonstrate that excellent visual effects can be achieved using hundreds of strokes. The training process does not require the experience of human painters or stroke tracking data. The code is available at https://github.com/hzwer/ICCV2019-LearningToPaint.
Adversarial attacks find perturbations that can fool models into misclassifying images. Previous works had successes in generating noisy/edge-rich adversarial perturbations, at the cost of degradation of image quality. Such perturbations, even when t hey are small in scale, are usually easily spottable by human vision. In contrast, we propose Harmonic Adversar- ial Attack Methods (HAAM), that generates edge-free perturbations by using harmonic functions. The property of edge-free guarantees that the generated adversarial images can still preserve visual quality, even when perturbations are of large magnitudes. Experiments also show that adversaries generated by HAAM often have higher rates of success when transferring between models. In addition, we find harmonic perturbations can simulate natural phenomena like natural lighting and shadows. It would then be possible to help find corner cases for given models, as a first step to improving them.
In this paper we explore acceleration techniques for large scale nonconvex optimization problems with special focuses on deep neural networks. The extrapolation scheme is a classical approach for accelerating stochastic gradient descent for convex op timization, but it does not work well for nonconvex optimization typically. Alternatively, we propose an interpolation scheme to accelerate nonconvex optimization and call the method Interpolatron. We explain motivation behind Interpolatron and conduct a thorough empirical analysis. Empirical results on DNNs of great depths (e.g., 98-layer ResNet and 200-layer ResNet) on CIFAR-10 and ImageNet show that Interpolatron can converge much faster than the state-of-the-art methods such as the SGD with momentum and Adam. Furthermore, Andersons acceleration, in which mixing coefficients are computed by least-squares estimation, can also be used to improve the performance. Both Interpolatron and Andersons acceleration are easy to implement and tune. We also show that Interpolatron has linear convergence rate under certain regularity assumptions.
We introduce an Actor-Critic Ensemble(ACE) method for improving the performance of Deep Deterministic Policy Gradient(DDPG) algorithm. At inference time, our method uses a critic ensemble to select the best action from proposals of multiple actors ru nning in parallel. By having a larger candidate set, our method can avoid actions that have fatal consequences, while staying deterministic. Using ACE, we have won the 2nd place in NIPS17 Learning to Run competition, under the name of Megvii-hzwer.
Quantized Neural Networks (QNNs), which use low bitwidth numbers for representing parameters and performing computations, have been proposed to reduce the computation complexity, storage size and memory usage. In QNNs, parameters and activations are uniformly quantized, such that the multiplications and additions can be accelerated by bitwise operations. However, distributions of parameters in Neural Networks are often imbalanced, such that the uniform quantization determined from extremal values may under utilize available bitwidth. In this paper, we propose a novel quantization method that can ensure the balance of distributions of quantized values. Our method first recursively partitions the parameters by percentiles into balanced bins, and then applies uniform quantization. We also introduce computationally cheaper approximations of percentiles to reduce the computation overhead introduced. Overall, our method improves the prediction accuracies of QNNs without introducing extra computation during inference, has negligible impact on training speed, and is applicable to both Convolutional Neural Networks and Recurrent Neural Networks. Experiments on standard datasets including ImageNet and Penn Treebank confirm the effectiveness of our method. On ImageNet, the top-5 error rate of our 4-bit quantized GoogLeNet model is 12.7%, which is superior to the state-of-the-arts of QNNs.
Object Transfiguration replaces an object in an image with another object from a second image. For example it can perform tasks like putting exactly those eyeglasses from image A on the nose of the person in image B. Usage of exemplar images allows m ore precise specification of desired modifications and improves the diversity of conditional image generation. However, previous methods that rely on feature space operations, require paired data and/or appearance models for training or disentangling objects from background. In this work, we propose a model that can learn object transfiguration from two unpaired sets of images: one set containing images that have that kind of object, and the other set being the opposite, with the mild constraint that the objects be located approximately at the same place. For example, the training data can be one set of reference face images that have eyeglasses, and another set of images that have not, both of which spatially aligned by face landmarks. Despite the weak 0/1 labels, our model can learn an eyeglasses subspace that contain multiple representatives of different types of glasses. Consequently, we can perform fine-grained control of generated images, like swapping the glasses in two images by swapping the projected components in the eyeglasses subspace, to create novel images of people wearing eyeglasses. Overall, our deterministic generative model learns disentangled attribute subspaces from weakly labeled data by adversarial training. Experiments on CelebA and Multi-PIE datasets validate the effectiveness of the proposed model on real world data, in generating images with specified eyeglasses, smiling, hair styles, and lighting conditions etc. The code is available online.
176 - He Wen , Shuchang Zhou , Zhe Liang 2016
Fully convolutional neural networks give accurate, per-pixel prediction for input images and have applications like semantic segmentation. However, a typical FCN usually requires lots of floating point computation and large run-time memory, which eff ectively limits its usability. We propose a method to train Bit Fully Convolution Network (BFCN), a fully convolutional neural network that has low bit-width weights and activations. Because most of its computation-intensive convolutions are accomplished between low bit-width numbers, a BFCN can be accelerated by an efficient bit-convolution implementation. On CPU, the dot product operation between two bit vectors can be reduced to bitwise operations and popcounts, which can offer much higher throughput than 32-bit multiplications and additions. To validate the effectiveness of BFCN, we conduct experiments on the PASCAL VOC 2012 semantic segmentation task and Cityscapes. Our BFCN with 1-bit weights and 2-bit activations, which runs 7.8x faster on CPU or requires less than 1% resources on FPGA, can achieve comparable performance as the 32-bit counterpart.
286 - Qinyao He , He Wen , Shuchang Zhou 2016
Reducing bit-widths of weights, activations, and gradients of a Neural Network can shrink its storage size and memory usage, and also allow for faster training and inference by exploiting bitwise operations. However, previous attempts for quantizatio n of RNNs show considerable performance degradation when using low bit-width weights and activations. In this paper, we propose methods to quantize the structure of gates and interlinks in LSTM and GRU cells. In addition, we propose balanced quantization methods for weights to further reduce performance degradation. Experiments on PTB and IMDB datasets confirm effectiveness of our methods as performances of our models match or surpass the previous state-of-the-art of quantized RNN.
Recently, text detection and recognition in natural scenes are becoming increasing popular in the computer vision community as well as the document analysis community. However, majority of the existing ideas, algorithms and systems are specifically d esigned for English. This technical report presents the final results of the ICDAR 2015 Text Reading in the Wild (TRW 2015) competition, which aims at establishing a benchmark for assessing detection and recognition algorithms devised for both Chinese and English scripts and providing a playground for researchers from the community. In this article, we describe in detail the dataset, tasks, evaluation protocols and participants of this competition, and report the performance of the participating methods. Moreover, promising directions for future research are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا