ترغب بنشر مسار تعليمي؟ اضغط هنا

Invisible cloaks provide a way to hide an object under the detection of waves. A perfect cloak guides the incident waves through the cloaking shell without any distortion. In most cases, some important quantum degrees of freedom, e.g. electron spin o r photon polarization, are not taken into account when designing a cloak. Here, we propose to use the temporal steering inequality of these degrees of freedom to detect the existence of an invisible cloak.
Einstein-Podolsky-Rosen (EPR) steering is a type of quantum correlation which allows one to remotely prepare, or steer, the state of a distant quantum system. While EPR steering can be thought of as a purely spatial correlation there does exist a tem poral analogue, in the form of single-system temporal steering. However, a precise quantification of such temporal steering has been lacking. Here we show that it can be measured, via semidefinite programming, with a temporal steerable weight, in direct analogy to the recently proposed EPR steerable weight. We find a useful property of the temporal steerable weight in that it is a non-increasing function under completely-positive trace-preserving maps and can be used to define a sufficient and practical measure of strong non-Markovianity.
Entanglement plays a central role in the field of quantum information science. It is well known that the degree of entanglement cannot be increased under local operations. Here, we show that the concurrence of a bipartite entangled state can be incre ased under the local PT -symmetric operation. This violates the property of entanglement monotonicity. We also use the Bell-CHSH and steering inequalities to explore this phenomenon.
We propose a scheme to realize entanglement swapping via superradiance, entangling two distant cavities without a direct interaction. The successful Bell-state-measurement outcomes are performed naturally by the electromagnetic reservoir, and we show how, using a quantum trajectory method, the non-local properties of the state obtained after the swapping procedure can be verified by the steering inequality. Furthermore, we discuss how the unsuccessful measurement outcomes can be used in an experiment of delayed-choice entanglement swapping. An extension of testing the quantum steering inequality with the observers at three different times is also considered
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا