ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding audio-visual content and the ability to have an informative conversation about it have both been challenging areas for intelligent systems. The Audio Visual Scene-aware Dialog (AVSD) challenge, organized as a track of the Dialog System Technology Challenge 7 (DSTC7), proposes a combined task, where a system has to answer questions pertaining to a video given a dialogue with previous question-answer pairs and the video itself. We propose for this task a hierarchical encoder-decoder model which computes a multi-modal embedding of the dialogue context. It first embeds the dialogue history using two LSTMs. We extract video and audio frames at regular intervals and compute semantic features using pre-trained I3D and VGGish models, respectively. Before summarizing both modalities into fixed-length vectors using LSTMs, we use FiLM blocks to condition them on the embeddings of the current question, which allows us to reduce the dimensionality considerably. Finally, we use an LSTM decoder that we train with scheduled sampling and evaluate using beam search. Compared to the modality-fusing baseline model released by the AVSD challenge organizers, our model achieves a relative improvements of more than 16%, scoring 0.36 BLEU-4 and more than 33%, scoring 0.997 CIDEr.
Conditional text-to-image generation is an active area of research, with many possible applications. Existing research has primarily focused on generating a single image from available conditioning information in one step. One practical extension bey ond one-step generation is a system that generates an image iteratively, conditioned on ongoing linguistic input or feedback. This is significantly more challenging than one-step generation tasks, as such a system must understand the contents of its generated images with respect to the feedback history, the current feedback, as well as the interactions among concepts present in the feedback history. In this work, we present a recurrent image generation model which takes into account both the generated output up to the current step as well as all past instructions for generation. We show that our model is able to generate the background, add new objects, and apply simple transformations to existing objects. We believe our approach is an important step toward interactive generation. Code and data is available at: https://www.microsoft.com/en-us/research/project/generative-neural-visual-artist-geneva/ .
Synthesizing realistic images from text descriptions on a dataset like Microsoft Common Objects in Context (MS COCO), where each image can contain several objects, is a challenging task. Prior work has used text captions to generate images. However, captions might not be informative enough to capture the entire image and insufficient for the model to be able to understand which objects in the images correspond to which words in the captions. We show that adding a dialogue that further describes the scene leads to significant improvement in the inception score and in the quality of generated images on the MS COCO dataset.
Automated metrics such as BLEU are widely used in the machine translation literature. They have also been used recently in the dialogue community for evaluating dialogue response generation. However, previous work in dialogue response generation has shown that these metrics do not correlate strongly with human judgment in the non task-oriented dialogue setting. Task-oriented dialogue responses are expressed on narrower domains and exhibit lower diversity. It is thus reasonable to think that these automated metrics would correlate well with human judgment in the task-oriented setting where the generation task consists of translating dialogue acts into a sentence. We conduct an empirical study to confirm whether this is the case. Our findings indicate that these automated metrics have stronger correlation with human judgments in the task-oriented setting compared to what has been observed in the non task-oriented setting. We also observe that these metrics correlate even better for datasets which provide multiple ground truth reference sentences. In addition, we show that some of the currently available corpora for task-oriented language generation can be solved with simple models and advocate for more challenging datasets.
This paper presents the Frames dataset (Frames is available at http://datasets.maluuba.com/Frames), a corpus of 1369 human-human dialogues with an average of 15 turns per dialogue. We developed this dataset to study the role of memory in goal-oriente d dialogue systems. Based on Frames, we introduce a task called frame tracking, which extends state tracking to a setting where several states are tracked simultaneously. We propose a baseline model for this task. We show that Frames can also be used to study memory in dialogue management and information presentation through natural language generation.
We consider the problem of learning preferences over trajectories for mobile manipulators such as personal robots and assembly line robots. The preferences we learn are more intricate than simple geometric constraints on trajectories; they are rather governed by the surrounding context of various objects and human interactions in the environment. We propose a coactive online learning framework for teaching preferences in contextually rich environments. The key novelty of our approach lies in the type of feedback expected from the user: the human user does not need to demonstrate optimal trajectories as training data, but merely needs to iteratively provide trajectories that slightly improve over the trajectory currently proposed by the system. We argue that this coactive preference feedback can be more easily elicited than demonstrations of optimal trajectories. Nevertheless, theoretical regret bounds of our algorithm match the asymptotic rates of optimal trajectory algorithms. We implement our algorithm on two high degree-of-freedom robots, PR2 and Baxter, and present three intuitive mechanisms for providing such incremental feedback. In our experimental evaluation we consider two context rich settings -- household chores and grocery store checkout -- and show that users are able to train the robot with just a few feedbacks (taking only a few minutes).footnote{Parts of this work has been published at NIPS and ISRR conferences~citep{Jain13,Jain13b}. This journal submission presents a consistent full paper, and also includes the proof of regret bounds, more details of the robotic system, and a thorough related work.}
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا