ترغب بنشر مسار تعليمي؟ اضغط هنا

As is well known, the usual discrepancy is defined for a normal Q-Gorenstein variety. By using this discrepancy we can define a canonical singularity and a log canonical singularity. In the same way, by using a new notion, Mather-Jacobian discrepancy introduced in recent papers we can define a canonical singularity and a log canonical singularity for not necessarily normal or Q-Gorenstein varieties. In this paper, we show basic properties of these singularities, behavior of these singularities under deformations and determine all these singularities of dimension up to 2.
This paper characterizes singularities with Mather minimal log discrepancies in the highest unit interval, i.e., the interval between $d-1$ and $d$, where $d$ is the dimension of the scheme. The class of these singularities coincides with one of the classes of (1) compound Du Val singularities, (2) normal crossing double singularities, (3) pinch points, and (4) pairs of non-singular varieties and boundaries with multiplicities less than or equal to 1 at the point. As a corollary, we also obtain one implication of an equivalence conjectured by Shokurov for the usual minimal log discrepancies.
205 - Shihoko Ishii 2013
Let $E$ be the essential part of the exceptional locus of a good resolution of an isolated, log canonical singularity of index one. We describe the dimension of the dual complex of $E$ in terms of the Hodge type of $H^{n-1}(E, O_E)$, which is one of the main results of the paper [1] of Fujino. Our proof uses only an elementary classical method, while Fujinos argument depends on the recent development in minimal model theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا