ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum channels in free-space, an essential prerequisite for fundamental tests of quantum mechanics and quantum technologies in open space, have so far been based on direct line-of-sight because the predominant approaches for photon-encoding, includ ing polarization and spatial modes, are not compatible with randomly scattered photons. Here we demonstrate a novel approach to transfer and recover quantum coherence from scattered, non-line-of-sight photons analyzed in a multimode and imaging interferometer for time-bins, combined with photon detection based on a 8x8 single-photon-detector-array. The observed time-bin visibility for scattered photons remained at a high $95%$ over a wide scattering angle range of -45 degree to +45 degree, while the individual pixels in the detector array resolve or track an image in its field of view of ca. 0.5 degrees. Using our method we demonstrate the viability of two novel applications. Firstly, using scattered photons as an indirect channel for quantum communication thereby enabling non-line-of-sight quantum communication with background suppression, and secondly, using the combined arrival time and quantum coherence to enhance the contrast of low-light imaging and laser ranging under high background light. We believe our method will instigate new lines for research and development on applying photon coherence from scattered signals to quantum sensing, imaging, and communication in free-space environments.
Although quantum communication systems are being deployed on a global scale, their realistic security certification is not yet available. Here we present a security evaluation and improvement protocol for complete quantum communication systems. The p rotocol subdivides a system by defining seven system implementation sub-layers based on a hierarchical order of information flow; then it categorises the known system implementation imperfections by hardness of protection and practical risk. Next, an initial analysis report lists all potential loopholes in its quantum-optical part. It is followed by interactions with the system manufacturer, testing and patching most loopholes, and re-assessing their status. Our protocol has been applied on multiple commercial quantum key distribution systems to improve their security. A detailed description of our methodology is presented with the example of a subcarrier-wave system. Our protocol is a step towards future security evaluation and security certification standards.
Quantum key distribution (QKD) promises information theoretic secure key as long as the device performs as assumed in the theoretical model. One of the assumptions is an absence of information leakage about individual photon detection outcomes of the receiver unit. Here we investigate the information leakage from a QKD receiver due to photon emission caused by detection events in single-photon detectors (backflash). We test commercial silicon avalanche photodiodes and a photomultiplier tube, and find that the former emit backflashes. We study the spectral, timing and polarization characteristics of these backflash photons. We experimentally demonstrate on a free-space QKD receiver that an eavesdropper can distinguish which detector has clicked inside it, and thus acquire secret information. A set of countermeasures both in theory and on the physical devices are discussed.
A security evaluation against the finite-key-size effect was performed for a commercial plug-and-play quantum key distribution (QKD) system. We demonstrate the ability of an eavesdropper to force the system to distill key from a smaller length of sif ted-key. We also derive a key-rate equation that is specific for this system. This equation provides bounds above the upper bound of secure key under finite-key-size analysis. From this equation and our experimental data, we show that the keys that have been distilled from the smaller sifted-key size fall above our bound. Thus, their security is not covered by finite-key-size analysis. Experimentally, we could consistently force the system to generate the key outside of the bound. We also test manufacturers software update. Although all the keys after the patch fall under our bound, their security cannot be guaranteed under this analysis. Our methodology can be used for security certification and standardization of QKD systems.
In the last decade, efforts have been made to reconcile theoretical security with realistic imperfect implementations of quantum key distribution (QKD). Implementable countermeasures are proposed to patch the discovered loopholes. However, certain co untermeasures are not as robust as would be expected. In this paper, we present a concrete example of ID Quantiques random-detector-efficiency countermeasure against detector blinding attacks. As a third-party tester, we have found that the first industrial implementation of this countermeasure is effective against the original blinding attack, but not immune to a modified blinding attack. Then, we implement and test a later full version of this countermeasure containing a security proof [C. C. W. Lim et al., IEEE Journal of Selected Topics in Quantum Electronics, 21, 6601305 (2015)]. We find that it is still vulnerable against the modified blinding attack, because an assumption about hardware characteristics on which the proof relies fails in practice.
The security of quantum communication using a weak coherent source requires an accurate knowledge of the sources mean photon number. Finite calibration precision or an active manipulation by an attacker may cause the actual emitted photon number to d eviate from the known value. We model effects of this deviation on the security of three quantum communication protocols: the Bennett-Brassard 1984 (BB84) quantum key distribution (QKD) protocol without decoy states, Scarani-Acin-Ribordy-Gisin 2004 (SARG04) QKD protocol, and a coin-tossing protocol. For QKD, we model both a strong attack using technology possible in principle, and a realistic attack bounded by todays technology. To maintain the mean photon number in two-way systems, such as plug-and-play and relativistic quantum cryptography schemes, bright pulse energy incoming from the communication channel must be monitored. Implementation of a monitoring detector has largely been ignored so far, except for ID Quantiques commercial QKD system Clavis2. We scrutinize this implementation for security problems, and show that designing a hack-proof pulse-energy-measuring detector is far from trivial. Indeed the first implementation has three serious flaws confirmed experimentally, each of which may be exploited in a cleverly constructed Trojan-horse attack. We discuss requirements for a loophole-free implementation of the monitoring detector.
Decoy-state quantum key distribution (QKD) is a standard technique in current quantum cryptographic implementations. Unfortunately, existing experiments have two important drawbacks: the state preparation is assumed to be perfect without errors and t he employed security proofs do not fully consider the finite-key effects for general attacks. These two drawbacks mean that existing experiments are not guaranteed to be secure in practice. Here, we perform an experiment that for the first time shows secure QKD with imperfect state preparations over long distances and achieves rigorous finite-key security bounds for decoy-state QKD against coherent attacks in the universally composable framework. We quantify the source flaws experimentally and demonstrate a QKD implementation that is tolerant to channel loss despite the source flaws. Our implementation considers more real-world problems than most previous experiments and our theory can be applied to general QKD systems. These features constitute a step towards secure QKD with imperfect devices.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا