ترغب بنشر مسار تعليمي؟ اضغط هنا

In order to unravel a role of doping in the iron-based superconductors, we investigated the in-plane resistivity for BaFe$_2$As$_2$ doped at either of the three different lattice sites, Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$, BaFe$_2$(As$_{1-x}$P$_x$)$_2$, a nd Ba$_{1-x}$K$_x$Fe$_2$As$_2$, focusing on the doping effect in the low-temperature antiferromagnetic/orthorhombic (AFO) phase. A major role of doping in the high-temperature paramagnetic/tetragonal (PT) phase is known to change the Fermi surface by supplying charge carriers or by exerting chemical pressure. In the AFO phase, we found a clear correlation between the magnitude of residual resistivity and resistivity anisotropy. This indicates that the resistivity anisotropy originates from the anisotropic impurity scattering from dopant atoms. The magnitude of residual resistivity is also found to be a parameter controlling the suppression rate of AFO ordering temperature $T_s$. Therefore, the dominant role of doping in the AFO phase is to introduce disorder to the system, distinct from that in the PT phase.
Centimeter sized platelet single crystals of KFe2As2 were grown using a self-flux method. An encapsulation technique using commercial stainless steel container allowed the stable crystal growth lasting for more than 2 weeks. Ternary K-Fe-As systems w ith various starting compositions were examined to determine the optimal growth conditions. Employment of KAs flux led to the growth of large single crystals with the typical size of as large as 15 mm x 10 mm x 0.4 mm. The grown crystals exhibit sharp superconducting transition at 3.4 K with the transition width 0.2 K, as well as the very large residual resistivity ratio exceeding 450, evidencing the good sample quality.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا