ترغب بنشر مسار تعليمي؟ اضغط هنا

Beta-BaZn2As2 is known to be a p-type semiconductor with the layered crystal structure similar to that of LaZnAsO, leading to the expectation that beta-BaZn2As2 and LaZnAsO have similar bandgaps; however, the bandgap of beta-BaZn2As2 (previously-repo rted value ~0.2 eV) is one order of magnitude smaller than that of LaZnAsO (1.5 eV). In this paper, the reliable bandgap value of beta-BaZn2As2 is determined to be 0.23 eV from the intrinsic region of the tem-perature dependence of electrical conductivity. The origins of this narrow bandgap are discussed based on the chemi-cal bonding nature probed by 6 keV hard X-ray photoemission spectroscopy, hybrid density functional calculations, and the ligand theory. One origin is the direct As-As hybridization between adjacent [ZnAs] layers, which leads to a secondary splitting of As 4p levels and raises the valence band maximum. The other is that the non-bonding Ba 5dx2-y2 orbitals form unexpectedly deep conduction band minimum (CBM) in beta-BaZn2As2 although the CBM of LaZnAsO is formed mainly of Zn 4s. These two origins provide a quantitative explanation for the bandgap difference between beta-BaZn2As2 and LaZnAsO.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا