ترغب بنشر مسار تعليمي؟ اضغط هنا

The best performing Binary Neural Networks (BNNs) are usually attained using Adam optimization and its multi-step training variants. However, to the best of our knowledge, few studies explore the fundamental reasons why Adam is superior to other opti mizers like SGD for BNN optimization or provide analytical explanations that support specific training strategies. To address this, in this paper we first investigate the trajectories of gradients and weights in BNNs during the training process. We show the regularization effect of second-order momentum in Adam is crucial to revitalize the weights that are dead due to the activation saturation in BNNs. We find that Adam, through its adaptive learning rate strategy, is better equipped to handle the rugged loss surface of BNNs and reaches a better optimum with higher generalization ability. Furthermore, we inspect the intriguing role of the real-valued weights in binary networks, and reveal the effect of weight decay on the stability and sluggishness of BNN optimization. Through extensive experiments and analysis, we derive a simple training scheme, building on existing Adam-based optimization, which achieves 70.5% top-1 accuracy on the ImageNet dataset using the same architecture as the state-of-the-art ReActNet while achieving 1.1% higher accuracy. Code and models are available at https://github.com/liuzechun/AdamBNN.
In this paper, we present our solution for the {it IJCAI--PRICAI--20 3D AI Challenge: 3D Object Reconstruction from A Single Image}. We develop a variant of AtlasNet that consumes single 2D images and generates 3D point clouds through 2D to 3D mappin g. To push the performance to the limit and present guidance on crucial implementation choices, we conduct extensive experiments to analyze the influence of decoder design and different settings on the normalization, projection, and sampling methods. Our method achieves 2nd place in the final track with a score of $70.88$, a chamfer distance of $36.87$, and a mean f-score of $59.18$. The source code of our method will be available at https://github.com/em-data/Enhanced_AtlasNet_3DReconstruction.
We present a new learning-based framework to recover vehicle pose in SO(3) from a single RGB image. In contrast to previous works that map from local appearance to observation angles, we explore a progressive approach by extracting meaningful Interme diate Geometrical Representations (IGRs) to estimate egocentric vehicle orientation. This approach features a deep model that transforms perceived intensities to IGRs, which are mapped to a 3D representation encoding object orientation in the camera coordinate system. Core problems are what IGRs to use and how to learn them more effectively. We answer the former question by designing IGRs based on an interpolated cuboid that derives from primitive 3D annotation readily. The latter question motivates us to incorporate geometry knowledge with a new loss function based on a projective invariant. This loss function allows unlabeled data to be used in the training stage to improve representation learning. Without additional labels, our system outperforms previous monocular RGB-based methods for joint vehicle detection and pose estimation on the KITTI benchmark, achieving performance even comparable to stereo methods. Code and pre-trained models are available at this https URL.
172 - Lei Ke , Shichao Li , Yanan Sun 2020
We present a novel end-to-end framework named as GSNet (Geometric and Scene-aware Network), which jointly estimates 6DoF poses and reconstructs detailed 3D car shapes from single urban street view. GSNet utilizes a unique four-way feature extraction and fusion scheme and directly regresses 6DoF poses and shapes in a single forward pass. Extensive experiments show that our diverse feature extraction and fusion scheme can greatly improve model performance. Based on a divide-and-conquer 3D shape representation strategy, GSNet reconstructs 3D vehicle shape with great detail (1352 vertices and 2700 faces). This dense mesh representation further leads us to consider geometrical consistency and scene context, and inspires a new multi-objective loss function to regularize network training, which in turn improves the accuracy of 6D pose estimation and validates the merit of jointly performing both tasks. We evaluate GSNet on the largest multi-task ApolloCar3D benchmark and achieve state-of-the-art performance both quantitatively and qualitatively. Project page is available at https://lkeab.github.io/gsnet/.
End-to-end deep representation learning has achieved remarkable accuracy for monocular 3D human pose estimation, yet these models may fail for unseen poses with limited and fixed training data. This paper proposes a novel data augmentation method tha t: (1) is scalable for synthesizing massive amount of training data (over 8 million valid 3D human poses with corresponding 2D projections) for training 2D-to-3D networks, (2) can effectively reduce dataset bias. Our method evolves a limited dataset to synthesize unseen 3D human skeletons based on a hierarchical human representation and heuristics inspired by prior knowledge. Extensive experiments show that our approach not only achieves state-of-the-art accuracy on the largest public benchmark, but also generalizes significantly better to unseen and rare poses. Code, pre-trained models and tools are available at this HTTPS URL.
Two-dimensional (2D) materials have become a fertile playground for the exploration and manipulation of novel collective electronic states. Recent experiments have unveiled a variety of robust 2D orders in highly-crystalline materials ranging from ma gnetism to ferroelectricity and from superconductivity to charge density wave (CDW) instability. The latter, in particular, appears in diverse patterns even within the same family of materials with isoelectronic species. Furthermore, how they evolve with dimensionality has so far remained elusive. Here we propose a general framework that provides a unfied picture of CDW ordering in the 2H polytype of four isoelectronic transition metal dichalcogenides 2H-MX$_2$ (M=Nb, Ta and X=S, Se). We first show experimentally that whilst NbSe$_2$ exhibits a strongly enhanced CDW order in the 2D limit, the opposite trend exists for TaSe$_2$ and TaS$_2$, with CDW being entirely absent in NbS$_2$ from its bulk to the monolayer. Such distinct behaviours are then demonstrated to be the result of a subtle, yet profound, competition between three factors: ionic charge transfer, electron-phonon coupling, and the spreading extension of the electronic wave functions. Despite its simplicity, our approach can, in essence, be applied to other quasi-2D materials to account for their CDW response at different thicknesses, thereby shedding new light on this intriguing quantum phenomenon and its underlying mechanisms.
Superconductivity mediated by phonons is typically conventional, exhibiting a momentum-independent s-wave pairing function, due to the isotropic interactions between electrons and phonons along different crystalline directions. Here, by performing in elastic neutron scattering measurements on a superconducting single crystal of Sr0.1Bi2Se3, a prime candidate for realizing topological superconductivity by doping the topological insulator Bi2Se3, we find that there exist highly anisotropic phonons, with the linewidths of the acoustic phonons increasing substantially at long wavelengths, but only for those along the [001] direction. This observation indicates a large and singular electron-phonon coupling at small momenta, which we propose to give rise to the exotic p-wave nematic superconducting pairing in the MxBi2Se3 (M = Cu, Sr, Nb) superconductor family. Therefore, we show these superconductors to be example systems where electron-phonon interaction can induce more exotic superconducting pairing than the s-wave, consistent with the topological superconductivity.
Dirac nodal-line semimetals with the linear bands crossing along a line or loop, represent a new topological state of matter. Here, by carrying out magnetotransport measurements and performing first-principle calculations, we demonstrate that such a state has been realized in high-quality single crystals of SrAs3. We obtain the nontrivial pi Berry phase by analysing the Shubnikov-de Haas quantum oscillations. We also observe a robust negative longitudinal magnetoresistance induced by the chiral anomaly. Accompanying first-principles calculations identify that a single hole pocket enclosing the loop nodes is responsible for these observations.
We have combined elastic and inelastic neutron scattering techniques, magnetic susceptibility and resistivity measurements to study single-crystal samples of K$_x$Fe$_{2-y}$Se$_2$, which contain the superconducting phase that has a transition tempera ture of $sim$31 K. In the inelastic neutron scattering measurements, we observe both the spin-wave excitations resulting from the block antiferromagnetic ordered phase and the resonance that is associated with the superconductivity in the superconducting phase, demonstrating the coexistence of these two orders. From the temperature dependence of the intensity of the magnetic Bragg peaks, we find that well before entering the superconducting state, the development of the magnetic order is interrupted, at $sim$42 K. We consider this result to be evidence for the physical separation of the antiferromagnetic and superconducting phases; the suppression is possibly due to the proximity effect of the superconducting fluctuations on the antiferromagnetic order.
294 - Shichao Liu , Ying Jiang 2017
We propose a graph-based process calculus for modeling and reasoning about wireless networks with local broadcasts. Graphs are used at syntactical level to describe the topological structures of networks. This calculus is equipped with a reduction se mantics and a labelled transition semantics. The former is used to define weak barbed congruence. The latter is used to define a parameterized weak bisimulation emphasizing locations and local broadcasts. We prove that weak bisimilarity implies weak barbed congruence. The potential applications are illustrated by some examples and two case studies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا