ترغب بنشر مسار تعليمي؟ اضغط هنا

Recently, image-to-image translation has made significant progress in achieving both multi-label (ie, translation conditioned on different labels) and multi-style (ie, generation with diverse styles) tasks. However, due to the unexplored independence and exclusiveness in the labels, existing endeavors are defeated by involving uncontrolled manipulations to the translation results. In this paper, we propose Hierarchical Style Disentanglement (HiSD) to address this issue. Specifically, we organize the labels into a hierarchical tree structure, in which independent tags, exclusive attributes, and disentangled styles are allocated from top to bottom. Correspondingly, a new translation process is designed to adapt the above structure, in which the styles are identified for controllable translations. Both qualitative and quantitative results on the CelebA-HQ dataset verify the ability of the proposed HiSD. We hope our method will serve as a solid baseline and provide fresh insights with the hierarchically organized annotations for future research in image-to-image translation. The code has been released at https://github.com/imlixinyang/HiSD.
Human visual system has the strong ability to quick assess the perceptual similarity between two facial sketches. However, existing two widely-used facial sketch metrics, e.g., FSIM and SSIM fail to address this perceptual similarity in this field. R ecent study in facial modeling area has verified that the inclusion of both structure and texture has a significant positive benefit for face sketch synthesis (FSS). But which statistics are more important, and are helpful for their success? In this paper, we design a perceptual metric,called Structure Co-Occurrence Texture (Scoot), which simultaneously considers the block-level spatial structure and co-occurrence texture statistics. To test the quality of metrics, we propose three novel meta-measures based on various reliable properties. Extensive experiments demonstrate that our Scoot metric exceeds the performance of prior work. Besides, we built the first large scale (152k judgments) human-perception-based sketch database that can evaluate how well a metric is consistent with human perception. Our results suggest that spatial structure and co-occurrence texture are two generally applicable perceptual features in face sketch synthesis.
Unpaired Image-to-Image Translation (UIT) focuses on translating images among different domains by using unpaired data, which has received increasing research focus due to its practical usage. However, existing UIT schemes defect in the need of super vised training, as well as the lack of encoding domain information. In this paper, we propose an Attribute Guided UIT model termed AGUIT to tackle these two challenges. AGUIT considers multi-modal and multi-domain tasks of UIT jointly with a novel semi-supervised setting, which also merits in representation disentanglement and fine control of outputs. Especially, AGUIT benefits from two-fold: (1) It adopts a novel semi-supervised learning process by translating attributes of labeled data to unlabeled data, and then reconstructing the unlabeled data by a cycle consistency operation. (2) It decomposes image representation into domain-invariant content code and domain-specific style code. The redesigned style code embeds image style into two variables drawn from standard Gaussian distribution and the distribution of domain label, which facilitates the fine control of translation due to the continuity of both variables. Finally, we introduce a new challenge, i.e., disentangled transfer, for UIT models, which adopts the disentangled representation to translate data less related with the training set. Extensive experiments demonstrate the capacity of AGUIT over existing state-of-the-art models.
Existing face sketch synthesis (FSS) similarity measures are sensitive to slight image degradation (e.g., noise, blur). However, human perception of the similarity of two sketches will consider both structure and texture as essential factors and is n ot sensitive to slight (pixel-level) mismatches. Consequently, the use of existing similarity measures can lead to better algorithms receiving a lower score than worse algorithms. This unreliable evaluation has significantly hindered the development of the FSS field. To solve this problem, we propose a novel and robust style similarity measure called Scoot-measure (Structure CO-Occurrence Texture Measure), which simultaneously evaluates block-level spatial structure and co-occurrence texture statistics. In addition, we further propose 4 new meta-measures and create 2 new datasets to perform a comprehensive evaluation of several widely-used FSS measures on two large databases. Experimental results demonstrate that our measure not only provides a reliable evaluation but also achieves significantly improved performance. Specifically, the study indicated a higher degree (78.8%) of correlation between our measure and human judgment than the best prior measure (58.6%). Our code will be made available.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا