ترغب بنشر مسار تعليمي؟ اضغط هنا

96 - Sheng-Chang Li , Li-Bin Fu , 2012
We adopt a three-level bosonic model to investigate the quantum phase transition in an ultracold atom-molecule conversion system which includes one atomic mode and two molecular modes. Through thoroughly exploring the properties of energy level struc ture, fidelity, and adiabatical geometric phase, we confirm that the system exists a second-order phase transition from an atommolecule mixture phase to a pure molecule phase. We give the explicit expression of the critical point and obtain two scaling laws to characterize this transition. In particular we find that both the critical exponents and the behaviors of ground-state geometric phase change obviously in contrast to a similar two-level model. Our analytical calculations show that the ground-state geometric phase jumps from zero to ?pi/3 at the critical point. This discontinuous behavior has been checked by numerical simulations and it can be used to identify the phase transition in the system.
We propose a feasible scheme to realize nonlinear Ramsey interferometry with a two-component Bose-Einstein condensate, where the nonlinearity arises from the interaction between coherent atoms. In our scheme, two Rosen-Zener pulses are separated by a n intermediate holding period of variable duration and through varying the holding period we have observed nice Ramsey interference patterns in time domain. In contrast to the standard Ramsey fringes our nonlinear Ramsey patterns display diversiform structures ascribed to the interplay of the nonlinearity and asymmetry. In particular, we find that the frequency of the nonlinear Ramsey fringes exactly reflects the strength of nonlinearity as well as the asymmetry of system. Our finding suggests a potential application of the nonlinear Ramsey interferometry in calibrating the atomic parameters such as scattering length and energy spectrum.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا