ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a machine learning (ML) based method for automated detection of Gamma-Ray Burst (GRB) candidate events in the range 60 keV - 250 keV from the AstroSat Cadmium Zinc Telluride Imager data. We use density-based spatial clustering to detect ex cess power and carry out an unsupervised hierarchical clustering across all such events to identify the different light curves present in the data. This representation helps understand the instruments sensitivity to the various GRB populations and identify the major non-astrophysical noise artefacts present in the data. We use Dynamic Time Warping (DTW) to carry out template matching, which ensures the morphological similarity of the detected events with known typical GRB light curves. DTW alleviates the need for a dense template repository often required in matched filtering like searches. The use of a similarity metric facilitates outlier detection suitable for capturing previously unmodelled events. We briefly discuss the characteristics of 35 long GRB candidates detected using the pipeline and show that with minor modifications such as adaptive binning, the method is also sensitive to short GRB events. Augmenting the existing data analysis pipeline with such ML capabilities alleviates the need for extensive manual inspection, enabling quicker response to alerts received from other observatories such as the gravitational-wave detectors.
We present a machine learning based information retrieval system for astronomical observatories that tries to address user defined queries related to an instrument. In the modern instrumentation scenario where heterogeneous systems and talents are si multaneously at work, the ability to supply with the right information helps speeding up the detector maintenance operations. Enhancing the detector uptime leads to increased coincidence observation and improves the likelihood for the detection of astrophysical signals. Besides, such efforts will efficiently disseminate technical knowledge to a wider audience and will help the ongoing efforts to build upcoming detectors like the LIGO-India etc even at the design phase to foresee possible challenges. The proposed method analyses existing documented efforts at the site to intelligently group together related information to a query and to present it on-line to the user. The user in response can further go into interesting links and find already developed solutions or probable ways to address the present situation optimally. A web application that incorporates the above idea has been implemented and tested for LIGO Livingston, LIGO Hanford and Virgo observatories.
Detection and classification of transients in data from gravitational wave detectors are crucial for efficient searches for true astrophysical events and identification of noise sources. We present a hybrid method for classification of short duration transients seen in gravitational wave data using both supervised and unsupervised machine learning techniques. To train the classifiers we use the relative wavelet energy and the corresponding entropy obtained by applying one-dimensional wavelet decomposition on the data. The prediction accuracy of the trained classifier on 9 simulated classes of gravitational wave transients and also LIGOs sixth science run hardware injections are reported. Targeted searches for a couple of known classes of non-astrophysical signals in the first observational run of Advanced LIGO data are also presented. The ability to accurately identify transient classes using minimal training samples makes the proposed method a useful tool for LIGO detector characterization as well as searches for short duration gravitational wave signals.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا