ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the results of a search for potential transit signals in the full 17-quarter data set collected during Keplers primary mission that ended on May 11, 2013, due to the on-board failure of a second reaction wheel needed to maintain high preci sion, fixed, pointing. The search includes a total of 198,646 targets, of which 112,001 were observed in every quarter and 86,645 were observed in a subset of the 17 quarters. We find a total of 12,669 targets that contain at least one signal that meets our detection criteria: periodicity of the signal, a minimum of three transit events, an acceptable signal-to-noise ratio, and four consistency tests that suppress false positives. Each target containing at least one transit-like pulse sequence is searched repeatedly for other signals that meet the detection criteria, indicating a multiple planet system. This multiple planet search adds an additional 7,698 transit-like signatures for a total of 20,367. Comparison of this set of detected signals with a set of known and vetted transiting planet signatures in the Kepler field of view shows that the recovery rate of the search is 90.3%. We review ensemble properties of the detected signals and present various metrics useful in validating these potential planetary signals. We highlight previously undetected planetary candidates, including several small potential planets in the habitable zone of their host stars.
We present the results of a search for potential transit signals in four years of photometry data acquired by the Kepler Mission. The targets of the search include 111,800 stars which were observed for the entire interval and 85,522 stars which were observed for a subset of the interval. We found that 9,743 targets contained at least one signal consistent with the signature of a transiting or eclipsing object, where the criteria for detection are periodicity of the detected transits, adequate signal-to-noise ratio, and acceptance by a number of tests which reject false positive detections. When targets that had produced a signal were searched repeatedly, an additional 6,542 signals were detected on 3,223 target stars, for a total of 16,285 potential detections. Comparison of the set of detected signals with a set of known and vetted transit events in the Kepler field of view shows that the recovery rate for these signals is 96.9%. The ensemble properties of the detected signals are reviewed.
We present the results of a search for potential transit signals in the first three years of photometry data acquired by the Kepler Mission. The targets of the search include 112,321 targets which were observed over the full interval and an additiona l 79,992 targets which were observed for a subset of the full interval. From this set of targets we find a total of 11,087 targets which contain at least one signal which meets the Kepler detection criteria: those criteria are periodicity of the signal, an acceptable signal-to-noise ratio, and three tests which reject false positives. Each target containing at least one detected signal is then searched repeatedly for additional signals, which represent multi-planet systems of transiting planets. When targets with multiple detections are considered, a total of 18,406 potential transiting planet signals are found in the Kepler Mission dataset. The detected signals are dominated by events with relatively low signal-to-noise ratios and by events with relatively short periods. The distribution of estimated transit depths appears to peak in the range between 20 and 30 parts per million, with a few detections down to fewer than 10 parts per million. The detections exhibit signal-to-noise ratios from 7.1 sigma, which is the lower cut-off for detections, to over 10,000 sigma, and periods ranging from 0.5 days, which is the shortest period searched, to 525 days, which is the upper limit of achievable periods given the length of the data set and the requirement that all detections include at least 3 transits. The detected signals are compared to a set of known transit events in the Kepler field of view, many of which were identified by alternative methods; the comparison shows that the current search recovery rate for targets with known transit events is 98.3%.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا