ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we study a stochastic recursive optimal control problem in which the value functional is defined by the solution of a backward stochastic differential equation (BSDE) under $tilde{G}$-expectation. Under standard assumptions, we establi sh the comparison theorem for this kind of BSDE and give a novel and simple method to obtain the dynamic programming principle. Finally, we prove that the value function is the unique viscosity solution of a type of fully nonlinear HJB equation.
In this paper, we aim to solve the high dimensional stochastic optimal control problem from the view of the stochastic maximum principle via deep learning. By introducing the extended Hamiltonian system which is essentially an FBSDE with a maximum co ndition, we reformulate the original control problem as a new one. Three algorithms are proposed to solve the new control problem. Numerical results for different examples demonstrate the effectiveness of our proposed algorithms, especially in high dimensional cases. And an important application of this method is to calculate the sub-linear expectations, which correspond to a kind of fully nonlinear PDEs.
Recently, the deep learning method has been used for solving forward-backward stochastic differential equations (FBSDEs) and parabolic partial differential equations (PDEs). It has good accuracy and performance for high-dimensional problems. In this paper, we mainly solve fully coupled FBSDEs through deep learning and provide three algorithms. Several numerical results show remarkable performance especially for high-dimensional cases.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا