ترغب بنشر مسار تعليمي؟ اضغط هنا

Gradient-based training in federated learning is known to be vulnerable to faulty/malicious worker nodes, which are often modeled as Byzantine clients. Previous work either makes use of auxiliary data at parameter server to verify the received gradie nts or leverages statistic-based methods to identify and remove malicious gradients from Byzantine clients. In this paper, we acknowledge that auxiliary data may not always be available in practice and focus on the statistic-based approach. However, recent work on model poisoning attacks have shown that well-crafted attacks can circumvent most of existing median- and distance-based statistical defense methods, making malicious gradients indistinguishable from honest ones. To tackle this challenge, we show that the element-wise sign of gradient vector can provide valuable insight in detecting model poisoning attacks. Based on our theoretical analysis of state-of-the-art attack, we propose a novel approach, textit{SignGuard}, to enable Byzantine-robust federated learning through collaborative malicious gradient filtering. More precisely, the received gradients are first processed to generate relevant magnitude, sign, and similarity statistics, which are then collaboratively utilized by multiple, parallel filters to eliminate malicious gradients before final aggregation. We further provide theoretical analysis of SignGuard by quantifying its convergence with appropriate choice of learning rate and under non-IID training data. Finally, extensive experiments of image and text classification tasks - including MNIST, Fashion-MNIST, CIFAR-10, and AG-News - are conducted together with recently proposed attacks and defense strategies. The numerical results demonstrate the effectiveness and superiority of our proposed approach.
Multimodal learning has achieved great successes in many scenarios. Compared with unimodal learning, it can effectively combine the information from different modalities to improve the performance of learning tasks. In reality, the multimodal data ma y have missing modalities due to various reasons, such as sensor failure and data transmission error. In previous works, the information of the modality-missing data has not been well exploited. To address this problem, we propose an efficient approach based on maximum likelihood estimation to incorporate the knowledge in the modality-missing data. Specifically, we design a likelihood function to characterize the conditional distribution of the modality-complete data and the modality-missing data, which is theoretically optimal. Moreover, we develop a generalized form of the softmax function to effectively implement maximum likelihood estimation in an end-to-end manner. Such training strategy guarantees the computability of our algorithm capably. Finally, we conduct a series of experiments on real-world multimodal datasets. Our results demonstrate the effectiveness of the proposed approach, even when 95% of the training data has missing modality.
Gradient quantization is an emerging technique in reducing communication costs in distributed learning. Existing gradient quantization algorithms often rely on engineering heuristics or empirical observations, lacking a systematic approach to dynamic ally quantize gradients. This paper addresses this issue by proposing a novel dynamically quantized SGD (DQ-SGD) framework, enabling us to dynamically adjust the quantization scheme for each gradient descent step by exploring the trade-off between communication cost and convergence error. We derive an upper bound, tight in some cases, of the convergence error for a restricted family of quantization schemes and loss functions. We design our DQ-SGD algorithm via minimizing the communication cost under the convergence error constraints. Finally, through extensive experiments on large-scale natural language processing and computer vision tasks on AG-News, CIFAR-10, and CIFAR-100 datasets, we demonstrate that our quantization scheme achieves better tradeoffs between the communication cost and learning performance than other state-of-the-art gradient quantization methods.
Transferability estimation is an essential problem in transfer learning to predict how good the performance is when transferring a source model (or source task) to a target task. Recent analytical transferability metrics have been widely used for sou rce model selection and multi-task learning. A major challenge is how to make transfereability estimation robust under the cross-domain cross-task settings. The recently proposed OTCE score solves this problem by considering both domain and task differences, with the help of transfer experiences on auxiliary tasks, which causes an efficiency overhead. In this work, we propose a practical transferability metric called JC-NCE score that dramatically improves the robustness of the task difference estimation in OTCE, thus removing the need for auxiliary tasks. Specifically, we build the joint correspondences between source and target data via solving an optimal transport problem with a ground cost considering both the sample distance and label distance, and then compute the transferability score as the negative conditional entropy of the matched labels. Extensive validations under the intra-dataset and inter-dataset transfer settings demonstrate that our JC-NCE score outperforms the auxiliary-task free version of OTCE for 7% and 12%, respectively, and is also more robust than other existing transferability metrics on average.
Transfer learning across heterogeneous data distributions (a.k.a. domains) and distinct tasks is a more general and challenging problem than conventional transfer learning, where either domains or tasks are assumed to be the same. While neural networ k based feature transfer is widely used in transfer learning applications, finding the optimal transfer strategy still requires time-consuming experiments and domain knowledge. We propose a transferability metric called Optimal Transport based Conditional Entropy (OTCE), to analytically predict the transfer performance for supervised classification tasks in such cross-domain and cross-task feature transfer settings. Our OTCE score characterizes transferability as a combination of domain difference and task difference, and explicitly evaluates them from data in a unified framework. Specifically, we use optimal transport to estimate domain difference and the optimal coupling between source and target distributions, which is then used to derive the conditional entropy of the target task (task difference). Experiments on the largest cross-domain dataset DomainNet and Office31 demonstrate that OTCE shows an average of 21% gain in the correlation with the ground truth transfer accuracy compared to state-of-the-art methods. We also investigate two applications of the OTCE score including source model selection and multi-source feature fusion.
We consider the problem of identifying universal low-dimensional features from high-dimensional data for inference tasks in settings involving learning. For such problems, we introduce natural notions of universality and we show a local equivalence a mong them. Our analysis is naturally expressed via information geometry, and represents a conceptually and computationally useful analysis. The development reveals the complementary roles of the singular value decomposition, Hirschfeld-Gebelein-Renyi maximal correlation, the canonical correlation and principle component analyses of Hotelling and Pearson, Tishbys information bottleneck, Wyners common information, Ky Fan $k$-norms, and Brieman and Friedmans alternating conditional expectations algorithm. We further illustrate how this framework facilitates understanding and optimizing aspects of learning systems, including multinomial logistic (softmax) regression and the associated neural network architecture, matrix factorization methods for collaborative filtering and other applications, rank-constrained multivariate linear regression, and forms of semi-supervised learning.
It is commonly believed that the hidden layers of deep neural networks (DNNs) attempt to extract informative features for learning tasks. In this paper, we formalize this intuition by showing that the features extracted by DNN coincide with the resul t of an optimization problem, which we call the `universal feature selection problem, in a local analysis regime. We interpret the weights training in DNN as the projection of feature functions between feature spaces, specified by the network structure. Our formulation has direct operational meaning in terms of the performance for inference tasks, and gives interpretations to the internal computation results of DNNs. Results of numerical experiments are provided to support the analysis.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا