ترغب بنشر مسار تعليمي؟ اضغط هنا

End-to-end optimization capability offers neural image compression (NIC) superior lossy compression performance. However, distinct models are required to be trained to reach different points in the rate-distortion (R-D) space. In this paper, we consi der the problem of R-D characteristic analysis and modeling for NIC. We make efforts to formulate the essential mathematical functions to describe the R-D behavior of NIC using deep network and statistical modeling. Thus continuous bit-rate points could be elegantly realized by leveraging such model via a single trained network. In this regard, we propose a plugin-in module to learn the relationship between the target bit-rate and the binary representation for the latent variable of auto-encoder. Furthermore, we model the rate and distortion characteristic of NIC as a function of the coding parameter $lambda$ respectively. Our experiments show our proposed method is easy to adopt and obtains competitive coding performance with fixed-rate coding approaches, which would benefit the practical deployment of NIC. In addition, the proposed model could be applied to NIC rate control with limited bit-rate error using a single network.
Optimized for pixel fidelity metrics, images compressed by existing image codec are facing systematic challenges when used for visual analysis tasks, especially under low-bitrate coding. This paper proposes a visual analysis-motivated rate-distortion model for Versatile Video Coding (VVC) intra compression. The proposed model has two major contributions, a novel rate allocation strategy and a new distortion measurement model. We first propose the region of interest for machine (ROIM) to evaluate the degree of importance for each coding tree unit (CTU) in visual analysis. Then, a novel CTU-level bit allocation model is proposed based on ROIM and the local texture characteristics of each CTU. After an in-depth analysis of multiple distortion models, a visual analysis friendly distortion criteria is subsequently proposed by extracting deep feature of each coding unit (CU). To alleviate the problem of lacking spatial context information when calculating the distortion of each CU, we finally propose a multi-scale feature distortion (MSFD) metric using different neighboring pixels by weighting the extracted deep features in each scale. Extensive experimental results show that the proposed scheme could achieve up to 28.17% bitrate saving under the same analysis performance among several typical visual analysis tasks such as image classification, object detection, and semantic segmentation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا