ترغب بنشر مسار تعليمي؟ اضغط هنا

A mesh is a graph that divides physical space into regularly-shaped regions. Meshes computations form the basis of many applications, e.g. finite-element methods, image rendering, and collision detection. In one important mesh primitive, called a mes h update, each mesh vertex stores a value and repeatedly updates this value based on the values stored in all neighboring vertices. The performance of a mesh update depends on the layout of the mesh in memory. This paper shows how to find a memory layout that guarantees that the mesh update has asymptotically optimal memory performance for any set of memory parameters. Such a memory layout is called cache-oblivious. Formally, for a $d$-dimensional mesh $G$, block size $B$, and cache size $M$ (where $M=Omega(B^d)$), the mesh update of $G$ uses $O(1+|G|/B)$ memory transfers. The paper also shows how the mesh-update performance degrades for smaller caches, where $M=o(B^d)$. The paper then gives two algorithms for finding cache-oblivious mesh layouts. The first layout algorithm runs in time $O(|G|log^2|G|)$ both in expectation and with high probability on a RAM. It uses $O(1+|G|log^2(|G|/M)/B)$ memory transfers in expectation and $O(1+(|G|/B)(log^2(|G|/M) + log|G|))$ memory transfers with high probability in the cache-oblivious and disk-access machine (DAM) models. The layout is obtained by finding a fully balanced decomposition tree of $G$ and then performing an in-order traversal of the leaves of the tree. The second algorithm runs faster by almost a $log|G|/loglog|G|$ factor in all three memory models, both in expectation and with high probability. The layout obtained by finding a relax-balanced decomposition tree of $G$ and then performing an in-order traversal of the leaves of the tree.
We consider the problem of PAC-learning decision trees, i.e., learning a decision tree over the n-dimensional hypercube from independent random labeled examples. Despite significant effort, no polynomial-time algorithm is known for learning polynomia l-sized decision trees (even trees of any super-constant size), even when examples are assumed to be drawn from the uniform distribution on {0,1}^n. We give an algorithm that learns arbitrary polynomial-sized decision trees for {em most product distributions}. In particular, consider a random product distribution where the bias of each bit is chosen independently and uniformly from, say, [.49,.51]. Then with high probability over the parameters of the product distribution and the random examples drawn from it, the algorithm will learn any tree. More generally, in the spirit of smoothed analysis, we consider an arbitrary product distribution whose parameters are specified only up to a [-c,c] accuracy (perturbation), for an arbitrarily small positive constant c.
We study the design of local algorithms for massive graphs. A local algorithm is one that finds a solution containing or near a given vertex without looking at the whole graph. We present a local clustering algorithm. Our algorithm finds a good clust er--a subset of vertices whose internal connections are significantly richer than its external connections--near a given vertex. The running time of our algorithm, when it finds a non-empty local cluster, is nearly linear in the size of the cluster it outputs. Our clustering algorithm could be a useful primitive for handling massive graphs, such as social networks and web-graphs. As an application of this clustering algorithm, we present a partitioning algorithm that finds an approximate sparsest cut with nearly optimal balance. Our algorithm takes time nearly linear in the number edges of the graph. Using the partitioning algorithm of this paper, we have designed a nearly-linear time algorithm for constructing spectral sparsifiers of graphs, which we in turn use in a nearly-linear time algorithm for solving linear systems in symmetric, diagonally-dominant matrices. The linear system solver also leads to a nearly linear-time algorithm for approximating the second-smallest eigenvalue and corresponding eigenvector of the Laplacian matrix of a graph. These other results are presented in two companion papers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا