ترغب بنشر مسار تعليمي؟ اضغط هنا

Blockchain has been applied to data sharing to ensure the integrity of data and chain of custody. Sharing big data such as large biomedical data files is a challenge to blockchain systems since the ledger is not designed to maintain big files, access control is an issue, and users may be dishonest. We call big data such as big files stored outside of a ledger that includes the blockchain and world state at a blockchain node as off-state and propose an off-state sharing protocol for a blockchain system to share big data between pairs of nodes. In our protocol, only encrypted files are transferred. The cryptographic key is stored in the world state in a secure way and can be accessed only by authorized parties. A receiver has to request the corresponding cryptographic key from the sender to decrypt such encrypted files. All requests are run through transactions to establish reliable chain of custody. We design and implement a prototypical blockchain off-state sharing system, BOSS, with Hyperledger Fabric. Extensive experiments were performed to validate the feasibility and performance of BOSS.
Transition metal carbides have sparked unprecedented enthusiasm as high-performance catalysts in recent years. Still, the catalytic properties of copper (Cu) carbide remain unexplored. By introducing subsurface carbon (C) to Cu(111), displacement rea ction of proton in carboxyl acid group with single Cu atom is demonstrated at the atomic scale and room temperature. Its occurrence is attributed to the C-doping induced local charge of surface Cu atoms (up to +0.30 e/atom), which accelerates the rate of on-surface deprotonation via reduction of the corresponding energy barrier, thus enabling the instant displacement of a proton with a Cu atom when the molecules land on the surface. Such well-defined and robust Cu$^{delta +}$ surface based on the subsurface C doping offers a novel catalytic platform for on-surface synthesis.
On-surface synthesis (OSS) involving relatively high energy barriers remains challenging due to a typical dilemma: firm molecular anchor is required to prevent molecular desorption upon the reaction, whereas sufficient lateral mobility is crucial for subsequent coupling and assembly. By locking the molecular precursors on the substrate then unlocking them during the reaction, we present a strategy to address this challenge. High-yield synthesis based on well-defined decarboxylation, intermediate transition and hexamerization is demonstrated, resulting in an extended and ordered network exclusively composed of the newly-synthesized macrocyclic compound. Thanks to the steric hindrance of its maleimide group, we attain a preferential selection of the coupling. This work unlocks a promising path to enrich the reaction types and improve the coupling selectivity hence the structual homogeneity of the final product for OSS.
With the widely used method of correlation matrix analysis, this study reveals the change of traffic states on parallel motorways in North Rhine-Westphalia, Germany. In terms of the time series of traffic flow and velocity, we carry out a quantitativ e analysis in correlations and reveal a high level of strongly positive traffic flow correlation and rich structural features in the corresponding correlation matrices. The strong correlation is mainly ascribed to the daily time evolution of traffic flow during the periods of rush hours and non-rush hours. In terms of free flow and congestion, the structural features are able to capture the average traffic situation we derive from our data. Furthermore, the structural features in correlation matrices for individual time periods corroborate our results from the correlation matrices regarding a whole day. The average correlations in traffic flows and velocities over all pairwise sections disclose the traffic behavior during each individual time period. Our contribution uncovers the potential application of correlation analysis on the study of traffic networks as a complex system.
Purpose: Although recent deep energy-based generative models (EBMs) have shown encouraging results in many image generation tasks, how to take advantage of the self-adversarial cogitation in deep EBMs to boost the performance of Magnetic Resonance Im aging (MRI) reconstruction is still desired. Methods: With the successful application of deep learning in a wide range of MRI reconstruction, a line of emerging research involves formulating an optimization-based reconstruction method in the space of a generative model. Leveraging this, a novel regularization strategy is introduced in this article which takes advantage of self-adversarial cogitation of the deep energy-based model. More precisely, we advocate for alternative learning a more powerful energy-based model with maximum likelihood estimation to obtain the deep energy-based information, represented as image prior. Simultaneously, implicit inference with Langevin dynamics is a unique property of re-construction. In contrast to other generative models for reconstruction, the proposed method utilizes deep energy-based information as the image prior in reconstruction to improve the quality of image. Results: Experiment results that imply the proposed technique can obtain remarkable performance in terms of high reconstruction accuracy that is competitive with state-of-the-art methods, and does not suffer from mode collapse. Conclusion: Algorithmically, an iterative approach was presented to strengthen EBM training with the gradient of energy network. The robustness and the reproducibility of the algorithm were also experimentally validated. More importantly, the proposed reconstruction framework can be generalized for most MRI reconstruction scenarios.
Two dimensional multiferroics inherit prominent physical properties from both low dimensional materials and magnetoelectric materials, and can go beyond their three dimensional counterparts for their unique structures. Here, based on density function al theory calculations, a MXene derivative, i.e., i-MXene (Ta$_{2/3}$Fe$_{1/3}$)$_2$CO$_2$, is predicted to be a type-I multiferroic material. Originated from the reliable $5d^0$ rule, its ferroelectricity is robust, with a moderate polarization up to $sim12.33$ $mu$C/cm$^2$ along the a-axis, which can be easily switched and may persist above room temperature. Its magnetic ground state is layered antiferromagnetism. Although it is a type-I multiferroic material, its Neel temperature can be significantly tuned by the paraelectric-ferroelectric transition, manifesting a kind of intrinsic magnetoelectric coupling. Such magnetoelectric effect is originated from the conventional magnetostriction, but unexpectedly magnified by the exchange frustration. Our work not only reveals a nontrivial magnetoelectric mechanism, but also provides a strategy to search for more multiferroics in the two dimensional limit.
To understand the dynamics on complex networks, measurement of correlations is indispensable. In a motorway network, it is not sufficient to collect information on fluxes and velocities on all individual links, i.e. parts of the freeways between ramp s and highway crosses. The interdependencies and mutual connections are also of considerable interest. We analyze correlations in the complete motorway network in North Rhine-Westphalia, the most populous state in Germany. We view the motorway network as a complex system consisting of road sections which interact via the motion of vehicles, implying structures in the corresponding correlation matrices. In particular, we focus on collective behavior, i.e. coherent motion in the whole network or in large parts of it. To this end, we study the eigenvalue and eigenvector statistics and identify significant sections in the motorway network. We find collective behavior in these significant sections and further explore its causes. We show that collectivity throughout the network cannot directly be related to the traffic states (free, synchronous and congested) in Kerners three-phase theory. Hence, the degree of collectivity provides a new, complementary observable to characterize the motorway network.
Electronic health record (EHR) coding is the task of assigning ICD codes to each EHR. Most previous studies either only focus on the frequent ICD codes or treat rare and frequent ICD codes in the same way. These methods perform well on frequent ICD c odes but due to the extremely unbalanced distribution of ICD codes, the performance on rare ones is far from satisfactory. We seek to improve the performance for both frequent and rare ICD codes by using a contrastive graph-based EHR coding framework, CoGraph, which re-casts EHR coding as a few-shot learning task. First, we construct a heterogeneous EHR word-entity (HEWE) graph for each EHR, where the words and entities extracted from an EHR serve as nodes and the relations between them serve as edges. Then, CoGraph learns similarities and dissimilarities between HEWE graphs from different ICD codes so that information can be transferred among them. In a few-shot learning scenario, the model only has access to frequent ICD codes during training, which might force it to encode features that are useful for frequent ICD codes only. To mitigate this risk, CoGraph devises two graph contrastive learning schemes, GSCL and GECL, that exploit the HEWE graph structures so as to encode transferable features. GSCL utilizes the intra-correlation of different sub-graphs sampled from HEWE graphs while GECL exploits the inter-correlation among HEWE graphs at different clinical stages. Experiments on the MIMIC-III benchmark dataset show that CoGraph significantly outperforms state-of-the-art methods on EHR coding, not only on frequent ICD codes, but also on rare codes, in terms of several evaluation indicators. On frequent ICD codes, GSCL and GECL improve the classification accuracy and F1 by 1.31% and 0.61%, respectively, and on rare ICD codes CoGraph has more obvious improvements by 2.12% and 2.95%.
Time-frequency masking or spectrum prediction computed via short symmetric windows are commonly used in low-latency deep neural network (DNN) based source separation. In this paper, we propose the usage of an asymmetric analysis-synthesis window pair which allows for training with targets with better frequency resolution, while retaining the low-latency during inference suitable for real-time speech enhancement or assisted hearing applications. In order to assess our approach across various model types and datasets, we evaluate it with both speaker-independent deep clustering (DC) model and a speaker-dependent mask inference (MI) model. We report an improvement in separation performance of up to 1.5 dB in terms of source-to-distortion ratio (SDR) while maintaining an algorithmic latency of 8 ms.
With the rapid growth of traffic sensors deployed, a massive amount of traffic flow data are collected, revealing the long-term evolution of traffic flows and the gradual expansion of traffic networks. How to accurately forecasting these traffic flow attracts the attention of researchers as it is of great significance for improving the efficiency of transportation systems. However, existing methods mainly focus on the spatial-temporal correlation of static networks, leaving the problem of efficiently learning models on networks with expansion and evolving patterns less studied. To tackle this problem, we propose a Streaming Traffic Flow Forecasting Framework, TrafficStream, based on Graph Neural Networks (GNNs) and Continual Learning (CL), achieving accurate predictions and high efficiency. Firstly, we design a traffic pattern fusion method, cleverly integrating the new patterns that emerged during the long-term period into the model. A JS-divergence-based algorithm is proposed to mine new traffic patterns. Secondly, we introduce CL to consolidate the knowledge learned previously and transfer them to the current model. Specifically, we adopt two strategies: historical data replay and parameter smoothing. We construct a streaming traffic dataset to verify the efficiency and effectiveness of our model. Extensive experiments demonstrate its excellent potential to extract traffic patterns with high efficiency on long-term streaming network scene. The source code is available at https://github.com/AprLie/TrafficStream.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا