ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting nanowires can be fabricated by decomposition of an organometallic gas using a focused beam of Ga ions. However, physical damage and unintentional doping often results from the exposure to the ion beam, motivating the search for a mean s to achieve similar structures with a beam of electrons instead of ions. This has so far remained an experimental challenge. We report the fabrication of superconducting tungsten nanowires by electron-beam-induced-deposition, with critical temperature of 2.0 K and critical magnetic field of 3.7 T, and compare them with superconducting wires made with ions. This work opens up new possibilities for the realization of nanoscale superconducting devices, without the requirement of an ion beam column.
The elastic response of suspended NbSe3 nanowires is studied across the charge density wave phase transition. The nanoscale dimensions of the resonator lead to a large resonant frequency (10-100 MHz), bringing the excited phonon frequency in close pr oximity of the plasmon mode of the electronic condensate - a parameter window not accessible in bulk systems. The interaction between the phonon and plasmon modes strongly modifies the elastic properties at high frequencies. This is manifested in the nanomechanics of the system as a sharp peak in the temperature dependence of the elastic modulus (relative change of 12.8%) in the charge density wave phase.
We present a simple fabrication technique for lateral nanowire wrap-gate devices with high capacitive coupling and field-effect mobility. Our process uses e-beam lithography with a single resist-spinning step, and does not require chemical etching. W e measure, in the temperature range 1.5-250 K, a subthreshold slope of 5-54 mV/decade and mobility of 2800-2500 $cm^2/Vs$ -- significantly larger than previously reported lateral wrap-gate devices. At depletion, the barrier height due to the gated region is proportional to applied wrap-gate voltage.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا