ترغب بنشر مسار تعليمي؟ اضغط هنا

A new model of multi-party secret key agreement is proposed, in which one terminal called the communicator can transmit public messages to other terminals before all terminals agree on a secret key. A single-letter characterization of the achievable region is derived in the stationary memoryless case. The new model generalizes some other (old and new) models of key agreement. In particular, key generation with an omniscient helper is the special case where the communicator knows all sources, for which we derive a zero-rate one-shot converse for the secret key per bit of communication.
78 - Igal Sason , Sergio Verdu 2015
A new upper bound on the relative entropy is derived as a function of the total variation distance for probability measures defined on a common finite alphabet. The bound improves a previously reported bound by Csiszar and Talata. It is further exten ded to an upper bound on the Renyi divergence of an arbitrary non-negative order (including $infty$) as a function of the total variation distance.
This paper studies several properties of channel codes that approach the fundamental limits of a given (discrete or Gaussian) memoryless channel with a non-vanishing probability of error. The output distribution induced by an $epsilon$-capacity-achie ving code is shown to be close in a strong sense to the capacity achieving output distribution. Relying on the concentration of measure (isoperimetry) property enjoyed by the latter, it is shown that regular (Lipschitz) functions of channel outputs can be precisely estimated and turn out to be essentially non-random and independent of the actual code. It is also shown that the output distribution of a good code and the capacity achieving one cannot be distinguished with exponential reliability. The random process produced at the output of the channel is shown to satisfy the asymptotic equipartition property. Using related methods it is shown that quadratic forms and sums of $q$-th powers when evaluated at codewords of good AWGN codes approach the values obtained from a randomly generated Gaussian codeword.
This paper provides an extensive study of the behavior of the best achievable rate (and other related fundamental limits) in variable-length lossless compression. In the non-asymptotic regime, the fundamental limits of fixed-to-variable lossless comp ression with and without prefix constraints are shown to be tightly coupled. Several precise, quantitative bounds are derived, connecting the distribution of the optimal codelengths to the source information spectrum, and an exact analysis of the best achievable rate for arbitrary sources is given. Fine asymptotic results are proved for arbitrary (not necessarily prefix) compressors on general mixing sources. Non-asymptotic, explicit Gaussian approximation bounds are established for the best achievable rate on Markov sources. The source dispersion and the source varentropy rate are defined and characterized. Together with the entropy rate, the varentropy rate serves to tightly approximate the fundamental non-asymptotic limits of fixed-to-variable compression for all but very small blocklengths.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا