ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic mitigation is presented for filamentation instability and magnetic reconnection in a plasm driven by a wobbling electron sheet current. The wobbling current introduces an oscillating perturbation and smooths the perturbation. The sheet curren t creates an anti-parallel magnetic field in plasma. The initial small perturbation induces the electron beam filamentation and the magnetic reconnection. When the wobbling or oscillation motion is added to the sheet electron beam along the sheet current surface, the perturbation phase is mixed and consequently the instability growth is delayed remarkably. Normally plasma instabilities are discussed by the growth rate, because it would be difficult to measure or detect the phase of the perturbations in plasmas. However, the phase of perturbation can be controlled externally, for example, by the driver wobbling motion. The superimposition of perturbations introduced actively results in the perturbation smoothing, and the instability growth can be reduced, like feed-forward control.
The process of photon-photon scattering in vacuum is investigated analytically in the long-wavelength limit within the framework of the Euler-Heisenberg Lagrangian. In order to solve the nonlinear partial differential equations (PDEs) obtained from t his Lagrangian use is made of the hodograph transformation. This transformation makes it possible to turn a system of quasilinear PDEs into a system of linear PDEs. Exact solutions of the equations describing the nonlinear interaction of electromagnetic waves in vacuum in a one-dimensional configuration are obtained and analyzed.
Relativistic flying mirrors in plasmas are realized as thin dense electron (or electron-ion) layers accelerated by high-intensity electromagnetic waves to velocities close to the speed of light in vacuum. The reflection of an electromagnetic wave fro m the relativistic mirror results in its energy and frequency changing. In a counter-propagation configuration, the frequency of the reflected wave is multiplied by the factor proportional to the Lorentz factor squared. This scientific area promises the development of sources of ultrashort X-ray pulses in the attosecond range. The expected intensity will reach the level at which the effects predicted by nonlinear quantum electrodynamics start to play a key role.
Nonlinear axisymmetric cylindrical plasma oscillations in magnetized collisionless plasmas are a model for the electron fluid collapse on the axis behind an ultrashort relativisically intense laser pulse exciting a plasma wake wave. We present an ana lytical description of the strongly nonlinear oscillations showing that the magnetic field prevents closing of the cavity formed behind the laser pulse. This effect is demonstrated with 3D PIC simulations of the laser-plasma interaction. An analysis of the betatron oscillations of fast electrons in the presence of the magnetic field reveals a characteristic Four-Ray Star pattern which has been observed in the image of the electron bunch in experiments [T. Hosokai, et al., Phys. Rev. Lett. 97, 075004 (2006)].
We discuss the key important regimes of electromagnetic field interaction with charged particles. Main attention is paid to the nonlinear Thomson/Compton scattering regime with the radiation friction and quantum electrodynamics effects taken into acc ount. This process opens a channel of high efficiency electromagnetic energy conversion into hard electromagnetic radiation in the form of ultra short high power gamma ray flashes.
A method to generate ultrahigh intense electromagnetic fields is suggested, based on the laser pulse compression, carrier frequency upshift and focusing by a counter-propagating breaking plasma wave, relativistic flying parabolic mirror. This method allows us to achieve the quantum electrodynamics critical field (Schwinger limit) with present day laser systems.
Three dimensional (3D) relativistic electromagnetic sub-cycle solitons were observed in 3D Particle-in-Cell simulations of an intense short laser pulse propagation in an underdense plasma. Their structure resembles that of an oscillating electric dip ole with a poloidal electric field and a toroidal magnetic field that oscillate in-phase with the electron density with frequency below the Langmuir frequency. On the ion time scale the soliton undergoes a Coulomb explosion of its core, resulting in ion acceleration, and then evolves into a slowly expanding quasi-neutral cavity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا