ترغب بنشر مسار تعليمي؟ اضغط هنا

To enable a deep learning-based system to be used in the medical domain as a computer-aided diagnosis system, it is essential to not only classify diseases but also present the locations of the diseases. However, collecting instance-level annotations for various thoracic diseases is expensive. Therefore, weakly supervised localization methods have been proposed that use only image-level annotation. While the previous methods presented the disease location as the most discriminative part for classification, this causes a deep network to localize wrong areas for indistinguishable X-ray images. To solve this issue, we propose a spatial attention method using disease masks that describe the areas where diseases mainly occur. We then apply the spatial attention to find the precise disease area by highlighting the highest probability of disease occurrence. Meanwhile, the various sizes, rotations and noise in chest X-ray images make generating the disease masks challenging. To reduce the variation among images, we employ an alignment module to transform an input X-ray image into a generalized image. Through extensive experiments on the NIH-Chest X-ray dataset with eight kinds of diseases, we show that the proposed method results in superior localization performances compared to state-of-the-art methods.
Human activity recognition in videos has been widely studied and has recently gained significant advances with deep learning approaches; however, it remains a challenging task. In this paper, we propose a novel framework that simultaneously considers both implicit and explicit representations of human interactions by fusing information of local image where the interaction actively occurred, primitive motion with the posture of individual subjects body parts, and the co-occurrence of overall appearance change. Human interactions change, depending on how the body parts of each human interact with the other. The proposed method captures the subtle difference between different interactions using interacting body part attention. Semantically important body parts that interact with other objects are given more weight during feature representation. The combined feature of interacting body part attention-based individual representation and the co-occurrence descriptor of the full-body appearance change is fed into long short-term memory to model the temporal dynamics over time in a single framework. We validate the effectiveness of the proposed method using four widely used public datasets by outperforming the competing state-of-the-art method.
Conventional methods for object detection usually require substantial amounts of training data and annotated bounding boxes. If there are only a few training data and annotations, the object detectors easily overfit and fail to generalize. It exposes the practical weakness of the object detectors. On the other hand, human can easily master new reasoning rules with only a few demonstrations using previously learned knowledge. In this paper, we introduce a few-shot object detection via knowledge transfer, which aims to detect objects from a few training examples. Central to our method is prototypical knowledge transfer with an attached meta-learner. The meta-learner takes support set images that include the few examples of the novel categories and base categories, and predicts prototypes that represent each category as a vector. Then, the prototypes reweight each RoI (Region-of-Interest) feature vector from a query image to remodels R-CNN predictor heads. To facilitate the remodeling process, we predict the prototypes under a graph structure, which propagates information of the correlated base categories to the novel categories with explicit guidance of prior knowledge that represents correlations among categories. Extensive experiments on the PASCAL VOC dataset verifies the effectiveness of the proposed method.
Few-shot learning aims to classify unseen classes with a few training examples. While recent works have shown that standard mini-batch training with a carefully designed training strategy can improve generalization ability for unseen classes, well-kn own problems in deep networks such as memorizing training statistics have been less explored for few-shot learning. To tackle this issue, we propose self-augmentation that consolidates self-mix and self-distillation. Specifically, we exploit a regional dropout technique called self-mix, in which a patch of an image is substituted into other values in the same image. Then, we employ a backbone network that has auxiliary branches with its own classifier to enforce knowledge sharing. Lastly, we present a local representation learner to further exploit a few training examples for unseen classes. Experimental results show that the proposed method outperforms the state-of-the-art methods for prevalent few-shot benchmarks and improves the generalization ability.
In this article, we consider the problem of few-shot learning for classification. We assume a network trained for base categories with a large number of training examples, and we aim to add novel categories to it that have only a few, e.g., one or fi ve, training examples. This is a challenging scenario because: 1) high performance is required in both the base and novel categories; and 2) training the network for the new categories with a few training examples can contaminate the feature space trained well for the base categories. To address these challenges, we propose two geometric constraints to fine-tune the network with a few training examples. The first constraint enables features of the novel categories to cluster near the category weights, and the second maintains the weights of the novel categories far from the weights of the base categories. By applying the proposed constraints, we extract discriminative features for the novel categories while preserving the feature space learned for the base categories. Using public data sets for few-shot learning that are subsets of ImageNet, we demonstrate that the proposed method outperforms prevalent methods by a large margin.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا