ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting post-merger features of merger remnants is highly dependent on the depth of observation images. However, it has been poorly discussed how long the post-merger features are visible under different observational conditions. We investigate a m erger-feature time useful for understanding the morphological transformation of galaxy mergers via numerical simulations. We use N-body/hydrodynamic simulations, including gas cooling, star formation, and supernova feedback. We run a set of simulations with various initial orbital configurations and with progenitor galaxies having different morphological properties mainly for equal-mass mergers. As reference models, we ran additional simulations for non-equal mass mergers and mergers in a large halo potential. Mock images using the SDSS $r$ band are synthesized to estimate a merger-feature times and compare it between the merger simulations. The mock images suggest that the post-merger features involve a small fraction of stars, and the merger-feature time depends on galaxy interactions. In an isolated environment, the merger-feature time is, on average, $sim$ 2 times the final coalescence time for a shallow surface bright limit of 25 mag/arcsec^2. For a deeper surface brightness limit of 28 mag/arcsec^2, however, the merger-feature time is a factor of two longer, which is why the detection of post-merger features using shallow surveys has been difficult. Tidal force of a cluster potential is effective in stripping post-merger features out and reduces the merger-feature time.
We present a statistical study of the effects induced by substructures on the deflection potential of dark matter halos in the strong lensing regime. This investigation is based on the pertubative solution around the Einstein radius (Alard 2007) in w hich all the information on the deflection potential is specified by only a pair of one-dimensional functions on this ring. Using direct comparison with ray-tracing solutions, we found that the iso-contours of lensed images predicted by the pertubative solution is reproduced with a mean error on their radial extension of less than 1% - in units of the Einstein radius, for reasonable substructure masses. It demonstrates the efficiency of the approximation to track possible signatures of substructures. We have evaluated these two fields and studied their properties for different lens configurations modelled either through massive dark matter halos from a cosmological N-body simulation, or via toy models of Monte Carlo distribution of substructures embedded in a triaxial Hernquist potential. As expected, the angular power spectra of these two fields tend to have larger values for larger harmonic numbers when substructures are accounted for and they can be approximated by power-laws, whose values are fitted as a function of the profile and the distribution of the substructures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا