ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the behavior of Lipschitz functions on intrinsic $C^1$ submanifolds of Heisenberg groups: our main result is their almost everywhere tangential Pansu differentiability. We also provide two applications: a Lusin-type approximation of Lipschit z functions on $HH$-rectifiable sets, and a coarea formula on $HH$-rectifiable sets that completes the program started in~cite{JNGV}.
We approach the quasi-isometric classification questions on Lie groups by considering low dimensional cases and isometries alongside quasi-isometries. First, we present some new results related to quasi-isometries between Heintze groups. Then we will see how these results together with the existing tools related to isometries can be applied to groups of dimension 4 and 5 in particular. Thus we take steps towards determining all the equivalence classes of groups up to isometry and quasi-isometry. We completely solve the classification up to isometry for simply connected solvable groups in dimension 4, and for the subclass of groups of polynomial growth in dimension 5.
We give a complete analytic and geometric description of the horofunction boundary for polygonal sub-Finsler metrics---that is, those that arise as asymptotic cones of word metrics---on the Heisenberg group. We develop theory for the more general cas e of horofunction boundaries in homogeneous groups by connecting horofunctions to Pansu derivatives of the distance function.
We give a geometric criterion for a topological surface in the first Heisenberg group to be an intrinsic Lipschitz graph, using planar cones instead of the usual open cones.
We consider left-invariant distances $d$ on a Lie group $G$ with the property that there exists a multiplicative one-parameter group of Lie automorphisms $(0, infty)rightarrowmathtt{Aut}(G)$, $lambdamapstodelta_lambda$, so that $ d(delta_lambda x,del ta_lambda y) = lambda d(x,y)$, for all $x,yin G$ and all $lambda>0$. First, we show that all such distances are admissible, that is, they induce the manifold topology. Second, we characterize multiplicative one-parameter groups of Lie automorphisms that are dilations for some left-invariant distance in terms of algebraic properties of their infinitesimal generator. Third, we show that an admissible left-invariant distance on a Lie group with at least one nontrivial dilating automorphism is biLipschitz equivalent to one that admits a one-parameter group of dilating automorphisms. Moreover, the infinitesimal generator can be chosen to have spectrum in $[1,infty)$. Fourth, we characterize the automorphisms of a Lie group that are a dilating automorphisms for some admissible distance. Finally, we characterize metric Lie groups admitting a one-parameter group of dilating automorphisms as the only locally compact, isometrically homogeneous metric spaces with metric dilations of all factors. Such metric spaces appear as tangents of doubling metric spaces with unique tangents.
We study left-invariant distances on Lie groups for which there exists a one-parameter family of homothetic automorphisms. The main examples are Carnot groups, in particular the Heisenberg group with the standard dilations. We are interested in crite ria implying that, locally and away from the diagonal, the distance is Euclidean Lipschitz and, consequently, that the metric spheres are boundaries of Lipschitz domains in the Euclidean sense. In the first part of the paper, we consider geodesic distances. In this case, we actually prove the regularity of the distance in the more general context of sub-Finsler manifolds with no abnormal geodesics. Secondly, for general groups we identify an algebraic criterium in terms of the dilating automorphisms, which for example makes us conclude the regularity of homogeneous distances on the Heisenberg group.In such a group, we analyze in more details the geometry of metric spheres. We also provide examples of homogeneous groups where spheres presents cusps.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا